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Imprinting and driving electronic orbital magnetism
using magnons
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Magnons, as the most elementary excitations of magnetic materials, have recently emerged

as a prominent tool in electrical and thermal manipulation and transport of spin, and mag-

nonics as a field is considered as one of the pillars of modern spintronics. On the other hand,

orbitronics, which exploits the orbital degree of freedom of electrons rather than their spin,

emerges as a powerful platform in efficient design of currents and redistribution of angular

momentum in structurally complex materials. Here, we uncover a way to bridge the worlds of

magnonics and electronic orbital magnetism, which originates in the fundamental coupling of

scalar spin chirality, inherent to magnons, to the orbital degree of freedom in solids. We show

that this can result in efficient generation and transport of electronic orbital angular

momentum by magnons, thus opening the road to combining the functionalities of magnonics

and orbitronics to their mutual benefit in the realm of spintronics applications.
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Spin-heat conversion is a guiding motive in spincaloritronics,
which sets out to explore physical phenomena beyond the
limits of conventional electronics for energy-efficient

information processing1–4. In this light, spin-wave excitations,
known as magnons, offer bright prospects as they mediate ther-
mal spin transport via analogs of Seebeck5–7 and Nernst effects in
magnetic and nonmagnetic materials8–11. It has been suggested
that the complex spin arrangement exhibited by antiferromagnets
and noncollinear magnets provides an alternative route for trig-
gering spin-heat conversion through magnons12, which relies on
a vector chirality Si × Sj among spin moments Si and Sj. However,
while converting temperature gradients into transverse spin
currents as a consequence of the Dzyaloshinskii−Moriya
interaction10,13–16, the spin Nernst effect of magnons is rather
inefficient in light materials as it is proportional to the strength of
relativistic spin−orbit interaction10,16.

The situation here is quite similar to the one we are facing in
the realm of the spin Hall effect17, where strong spin−orbit
interaction is prerogative for generation of sizeable spin cur-
rents which can be in turn used to e.g. switch the magnetization
via the effect of spin−orbit torque18–20. Recently, a new para-
digm has emerged that relies on the generation of the currents
of orbital angular momentum rather than spin, and which
carries many advantages over conventional protocols in spi-
norbitronics21–24. The corresponding palette of effects evolving
around orbitronics is largely grounded in the fundamental fact
that the electric-field-driven currents of orbital angular
momentum of electrons as a rule overshadow the accompany-
ing currents of spin by far, while remaining large even in the
lightest materials21,23. Although nothing is known about
interaction of magnonic excitations with electronic orbital
magnetism, it appears to be extremely beneficial to marry the
promising ideas of orbitronics with the magnon-based philo-
sophy which has been very successful in the domain of spin
transport and spincaloritronics so far.

Nowadays, various magnetic phenomena in chiral spin systems
are often interpreted based on a second flavor of chirality—the
scalar spin chirality (SSC) χijk ¼ Ŝi � ðŜj ´ ŜkÞ between triplets of

spins, where Ŝα is the unit vector along Sα. This type of chirality,
which is inherent to skyrmions25–29 and frustrated magnets30–32,
has been crucial for understanding of e.g. topological Hall
effect33,34. In the context of skyrmions the SSC is known as the
emergent magnetic field that impacts the dynamics of electrons in
a way similar to usual but spin-dependent magnetic field25. In
particular, it has been recently realized that the presence of SSC in
frustrated magnets and skyrmions reflects in a nonvanishing
contribution to the orbital moment of electrons hopping among
triplets of non-coplanar spins—just as applying usual magnetic
field would give rise to orbital magnetization; see Fig. 1a 28,35,36.
The emergence of such chirality-driven orbital magnetization in
various systems has been shown in recent years27,28,35–39.

Here, we explore the idea that the coupling between chirality
and electronic orbital magnetism presents a unique way to har-
vest orbital angular momentum by generating magnons. We ask
the question whether magnonic excitations themselves can give
rise to net SSC, even if it is absent in the ground state. If yes, then
generating SSC by magnons would provide a unique mechanism
for imprinting electronic orbital angular momentum into the
system. Further, since an applied temperature gradient can drive
magnon scattering, it is reasonable to ask whether this can result
in a magnon “drag” of orbital angular momentum. If present,
such an effect (Fig. 1b) would give an ability of driving orbital
currents by magnons in addition to currents of spin. We provide
confirmative answers to both questions, and discuss possible
implications of our findings for spintronics applications.

Results
In order to demonstrate the emergence of magnon-mediated
orbital magnetization and generation of the current of elec-
tronic orbital angular momentum, we refer to microscopic
tight-binding and effective spin model of a ferromagnet on a
kagome lattice. Conceptually, we separately consider the
properties of the electronic bath that exhibits topological
orbital magnetism, and the properties of the reservoir of mag-
nons, while coupling both parts of the system by effective
topological orbital electron−magnon interaction. First, we
present the results that concern the generation of electronic
orbital magnetism by the mechanism of SSC.

Electronic topological orbital magnetism. We model the elec-
tronic part of our system by making use of the tight-binding
model of a magnet on a two-dimensional (in the xy-plane)
kagome lattice (Fig. 1a), whose details are explained in “Meth-
ods”. The electronic Hamiltonian is set by considering hoppings
among the atoms and an exchange splitting at each atomic site, in
a way similar to that of refs. 40,41. To uncover the SSC-mediated
mechanism of orbital moment generation, the spin−orbit inter-
action is explicitly not taken into account. We start with the
ferromagnetic state with the spins pointing out of the plane (see
the corresponding band structure in Fig. 2a) and then rotate all
spins into the plane by an angle θ away from the z-axis, while
keeping the azimuthal angles of the three spins at 0°, 120° and
240° (keeping z-axis as the threefold rotational symmetry axis).
We find that the effect of such non-coplanarity on the band
structure is most prominent in the vicinity of band degeneracies
(Fig. 2a).

As has been realized in the past years, the nonvanishing SSC in
canted spin systems gives rise to a special type of electronic orbital
moment—the topological orbital moment (TOM). While being in
its essence a Berry phase effect, microscopically, such TOM arises
in response to breaking of symmetry by non-coplanarity, which
allows for formation of nonlocal persistent orbital currents of
electrons without any need for spin−orbit interaction28,38,42–44.
The emergence of topological orbital magnetization in various
systems, including celebrated MnGe and Mn3Ge compounds, has
been shown in recent years from effective models, tight-binding
and first-principles calculations27,28,35–39. The Zeeman interaction
of TOM with an external magnetic field is known as the ring
exchange, which contributes to the spin Hamiltonian of chiral spin
systems45–47. By its nature, the TOM can be phenomenologically
expressed in terms of the SSC as28,37,38:

LTOM ¼ κTO
X
hijki

êijkχijk; ð1Þ

where 〈ijk〉 indicates that spins i, j, and k are nearest neighbors
forming a triangle (Fig. 1a), and a unit vector êijk is normal to the
triangle plane. The constant κTO is known as the topological orbital
susceptibility28,38 and it characterizes the strength of the orbital
response of electrons to the SSC. It has been shown that for
materials with relatively small spin−orbit strength, the influence of
the spin−orbit interaction on TOM is minor37,38. This is in contrast
to collinear magnets, where the orbital magnetism appears solely as
a result of spin−orbit interaction in the system. Here, we do not
consider the so-called chiral, proportional to the vector spin
chirality, contribution to the orbital magnetism in the system, as it
is expected to arise in the regime of large spin−orbit interaction,
not considered in this work28.

For our electronic system we numerically access the response
of electronic orbital magnetization to canting by referring to the
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rigorous expression:

LTOM ¼ e
2_

P
nk2occ

Im ∂kunkh j½

´ HðkÞ þ Enk � 2EFf g ∂kunkj i�;
ð2Þ

where HðkÞ is an effective single-particle tight-binding electronic
Hamiltonian of our system canted by an angle θ, unk is a periodic
part of Bloch state with band index n and crystal momentum k,
its corresponding energy eigenvalue is Enk , and the summation
goes over all occupied states below the Fermi energy EF. We
analyze the behavior of LTOM as a function of angle θ, and
compare it to that expected from Eq. (1), finding that, overall, the

explicitly calculated orbital response of the system to canting fits
the TOM-picture very well; see for example the case with band
filling of one electron per unit cell in Fig. 2b. In accord to this
picture, the orbital moment vanishes for the coplanar and
collinear cases, and the largest value of TOM is reached for the
state with largest SSC. This type of behavior, when κTO with a
good degree of accuracy can be assumed to be independent of θ in
the whole range of possible canting, persists over large regions of
energies. The deviations from it occur in the vicinity of band
crossings where the response of the band structure to canting is
very large, and where the orbital response is expected to be
pronounced28.

Fig. 1 Generation and drag of orbital angular momentum by magnons. a An electron hopping among noncollinear triplets of spins gives rise to so-called
topological orbital moment (TOM), LTOM, which points out of the plane of the spins. The electronic TOM is effectively induced by the scalar spin chirality
realized for example on a kagome spin lattice, which is shown in an oblique view. The unit cell is outlined with the dotted line. b Sketch of the orbital Nernst
effect of magnons for a ferromagnet on an example kagome lattice. While the generation of a magnon (orange arrows) imprints an average scalar spin
chirality into the system and leads to the generation of electronic TOM (red arrow), the generation of a magnon flow in a temperature gradient ∇T results
in a transverse deflection of magnons and corresponding TOM-mediated drag of the orbital angular momentum, denoted by LTOM

� �
T—which we refer to as

the orbital Nernst effect.

Fig. 2 Microscopics of topological orbital magnetism and magnonic topology of the model. a The electronic band structure based on the tight-binding
model of a kagome ferromagnet. The orange lines represent the bands of the ferromagnetic structure and the blue dotted lines mark the bands of the state
canted by a polar angle of θ= 10°. b The total toplogical orbital moment (TOM) as a function of the canting angle for the electron density of ρ= 1.0 e(cell)−1.
The red symbols mark the calculated values according to Eq. (2), while the black line is a fit according to Eq. (1). The inset displays the value of the
topological orbital susceptibility κTO around the ferromagnetic state as a function of Fermi energy of the tight-binding model. c Topological phase diagram of
the magnonic bands of a kagome ferromagnet as a function of the second nearest-neighbor Heisenberg coupling J2 and Dzyaloshinskii−Moriya interaction
(DMI) (in units of the nearest-neighbor Heisenberg coupling J1), as well as external magnetic field B (in Tesla). Colors highlight different phases that are
characterized by sets (C1,C2,C3) of Chern numbers. The unstable ferromagnetic phase is shown in red.
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Regardless, in our work, we focus on the interplay of orbital
magnetism and magnons that cause small deviations of the
magnetization from the ferromagnetic state; thus the value of the
topological orbital susceptibility in the vicinity of θ= 0° is of
primary interest. Our calculations, shown in the inset of Fig. 2b
for the entire range of energies of the model, reveal that the
magnitude of κTO in the limit of small canting exceeds the value
of 1 μB over large regions of energy, and sensitively depends on
the electronic structure.

Overall, our calculations demonstrate that even within the
simplest electronic structure considered here, it is possible to
generate sizable electronic orbital magnetization by the mechan-
ism of SSC, the properties of which can be tuned by electronic
structure design. We show below how to exploit the SSC
generation by magnons in order to imprint electronic orbital
magnetism into the system.

Modeling magnonic excitations. We consider the effect of
magnons on electronic orbital magnetism by referring to an
effective Hamiltonian of spin waves of a ferromagnet on a two-
dimensional kagome lattice, which is given by

H ¼ � 1
2

P
ij
J ijSi � Sj � 1

2

P
ij
Dij � Si ´ Sj

� �

�B � κTO P
ijk

êijk Ŝi � Ŝj ´ Ŝk
� �h i

� μBB �P
i
Si ;

ð3Þ
where Jij mediates the Heisenberg exchange between spins Si and
Sj on sites i and j, the second term is the antisymmetric Dzya-
loshinskii−Moriya interaction (DMI) quantified by vectors Dij,
and the fourth term couples the spins to an external magnetic
field B. In addition, we extend the Hamiltonian by the ring-
exchange term in Eq. (3) to include explicitly the interaction
between the magnetic field and the TOM45,47,48. This term is
given by the product of the SSC and the topological orbital sus-
ceptibility κTO 28,38. Owing to the symmetry of the planar kagome
lattice, the TOM and the DMI vectors are perpendicular to the

film plane (along the z-axis), along which we also apply the
external magnetic field of magnitude B.

We consider in our analysis only nearest-neighbor interactions
except for the Heisenberg term, where we include next-nearest
neighbors as well. We set the nearest-neighbor Heisenberg
coupling to J1= 1 meV, the next-nearest neighbor strength
amounts to J2= 0.1J1 unless stated otherwise, and the spin-
moment length S is fixed to 1. For the magnitude of topological
orbital susceptibility κTO we choose a representative value of
−0.5 μB—a value not only motivated by recent material
studies36,38,39, but also corresponding to the lower bound of
κTO-range found above for small deviations from the ferromag-
netic state. As follows from model considerations, the range of
values for κTO exhibited by the electrons living on a kagome
lattice is very large, and one should keep in mind that the effects
discussed below can be further enhanced by engineering the
electronic structure and the values of κTO. This route of material
design is distinctly different from that associated with the design
of the spin−orbit strength, taken routinely in conventional
spinorbitronics.

We first analyze the magnonic bands and their topology in
Figs. 2c and 3a−c. The dispersion of the three spin-wave
branches in the presence of an external magnetic field of 10 T is
presented in Fig. 3a. In the absence of DMI, the different magnon
bands exhibit Chern numbers 1, 0, and −1 solely due to the
coupling of the magnetic field to the SSC manifesting in a non-
zero TOM carried by the magnons, as we show below. By
including the effect of DMI, Fig. 3b, we find that the coupling to
the vector spin chirality modifies the dispersion without changing
the topology of the bands for this choice of parameters. While the
microscopic origin of interactions with vector and scalar spin
chiralities which enter Eq. (3) is fundamentally different, their
roles for the resulting magnon dispersion are rather similar at the
level of linear spin-wave theory. Based on the obtained spin-wave
spectra and Berry curvature calculations, we present in Fig. 2c the
complete topological phase diagram as a function of the model
parameters entering the Hamiltonian. Sampling the nearest-
neighbor coupling J2, the DMI strength, and the magnitude of the

Fig. 3 Imprinting electronic orbital magnetism by magnons in a kagome ferromagnet. a−c Fat band analysis for the magnonic bands of the model for the
values of the Dzyaloshinskii−Moriya interaction (DMI) (in units of the nearest-neighbor Heisenberg coupling J1), and magnetic field B specified at the
bottom. Red and blue colors represent positive and negative sign of the local topological orbital moment (TOM) LTOMnk , respectively, and the line thickness
denotes the corresponding magnitude. Bold integers indicate the Chern numbers of the spin-wave bands. d−g Distribution of the local TOM in the Brillouin
zone for different temperatures, after summing over all magnon branches weighted by the Bose distribution. The color map is in units of μB, and the model
parameters of panel (a) are used. h−k Overall TOM of the spin-wave system as a function of magnetic field and temperature. The panels (h−j) present
phase diagrams for the DMI strengths of 0, 0.2J1, and −0.2J1, respectively, with the color map indicating the net TOM in units of μB per unit cell. In (k),
solid and dotted lines correspond to DMI strengths of 0 and 0.2J1, respectively, and the magnetic field is given in Tesla.
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B-field, we identify eight nontrivial phases in addition to an
unstable ferromagnetic state. These phases come in pairs with an
opposite overall sign in the set of Chern numbers.

Imprinting orbital magnetism by magnons. To uncover the role
of magnons in giving rise to orbital magnetism of the electrons
through SSC, we evaluate the average value of the SSC that a
given magnon carries, and translate it into the topological orbital
moment of the magnon via the SSC-mediated orbital electron
−magnon coupling. We refer to this quantity as the local TOM of
the nth magnon branch and access it according to
LTOMnk ¼ κTO ΨnkjχðkÞjΨnkh i. Figure 3a−c illustrates the value of
the local TOM of the magnon branches as represented by the line
thickness. While either finite DMI or B-field are necessary to
activate the local TOM, the Γ point typically hosts the minima
and maxima of LTOMnk in our model. Specifically, the local TOM of
the lowest spin-wave branch reaches its global minimum at Γ
whereas the higher magnon bands carry the maximal values as
they correspond to precessional modes with an innately larger
SSC. Clearly, the complex interplay between DMI and the orbital
Zeeman coupling modifies not only the magnon topology but
imprints also on the local TOM. In particular, the ordering of the
states with positive and negative sign of LTOMnk is inverted during
the topological phase transition, which directly links the nature of
electronic orbital magnetism with nontrivial topology of
magnonic bands.

Since the local orbital moment carried by magnons depends
strongly on the band and position in the Brillouin zone, the effect
of finite temperature that results in the excitation of magnons
with finite energy can give rise to a net magnon-mediated
electronic orbital magnetization. To show this, we introduce a
finite temperature T in our spin system, and calculate the orbital
response of the electronic bath. In Fig. 3d−g we analyze the
sum of the local TOM weighted by the occupation number of
each spin-wave branch at a given temperature, i.e., ‘ðkÞ ¼P

nL
TOM
nk nBðϵnkÞ. Here, the magnons follow the Bose distribution

function nBðϵÞ ¼ ½expðβϵÞ � 1��1 with β= 1/kBT. Depending on
T, the number of excited magnons is different in each branch,
which leads to a nontrivial distribution of ℓ(k) in momentum
space, as shown in Fig. 3d−g for the model with finite B-field but
zero DMI. At low T, Fig. 3d, only the Γ-point magnons from the
first branch can be excited, leading only to small local
contributions around the BZ center. As the temperature is
increased, all spin-wave states from the first branch are excited
such that ℓ(k) peaks in the M point with moderate magnitude as
shown in Fig. 3e. If additionally magnons from the higher
branches contribute at elevated temperatures, the maximum of
ℓ(k) occurs at the Γ point, where the local TOM of the
corresponding magnon states is the largest.

The overall TOM of the spin-wave system at given T can be
then obtained as:

LTOM
� �

T ¼
Z
BZ

‘ðkÞ dk ¼
X
n

Z
BZ

nBðϵnkÞ LTOMnk dk; ð4Þ

where LTOM
� �

T is the total TOM carried by thermally activated
magnons per unit cell (see Supplementary Note 1). Figure 3h−j
illustrates the B, T-dependence of the overall TOM for various
DMI coupling strengths. On the one hand, as more magnons
become available to carry the TOM, higher temperatures enhance
the magnitude of LTOM

� �
T in the spin-wave system. On the other

hand, the roles of orbital Zeeman coupling and DMI are
intertwined in generating TOM. For example, while TOM locally
vanishes at zero DMI and B-field, a DMI with positive coupling
strength generally counteracts the effect of the magnetic field on

TOM if κTO is negative. For nontrivial choices of these
parameters, however, Fig. 3k illustrates that at low T the total
TOM increases linearly, and, depending on the value of κTO, it
can be sizeable.

The total topological orbital moment emerges as a quantity
which can be readily measured experimentally by referring to
techniques which are sensitive to orbital magnetization in
solids23,24,49,50. The sizeable magnitude of the effect that we
predict not only lends itself to an unambiguous observation, but
can also influence significantly the temperature dependence of the
overall magnetization in a sample, providing thus an additional
“anomalous” orbital channel to the conventional mechanism of
magnetization variation mediated by thermally excited mag-
nons2–4. Given the much stronger sensitivity of topological
orbital magnetism to electronic structure changes, as compared to
the spin, we suggest that the magnon-driven orbital magnetism
can serve as a unique tool in tracking the electronic structure
dynamics in various types of setups. As we also observe that the
sign of LTOM

� �
T correlates with the ordering of the topological

spin-wave bands and their respective Chern numbers, we suggest
to exploit the total topological orbital moment as an indicator of
topological dynamics of magnons.

Driving orbital currents by magnons. Answering the first
question posed in the introduction, our analysis demonstrates
that a finite TOM, stemming from orbital electronic currents, can
be triggered by thermally activated magnons.

This observation suggests that TOM is intimately linked to
thermal spin transport which is mediated by the coupling of the
SSC to the bath of electrons in the system. As a consequence,
the well-known magnon Nernst effect acquires a novel and

Fig. 4 Driving orbital currents by magnons: the orbital Nernst effect.
a Phase diagram of the orbital Nernst effect. Dependence of the orbital
Nernst conductivity κxyONE on magnetic field B and second nearest-neighbor
Heisenberg coupling J2 (in units of the nearest-neighbor Heisenberg
coupling J1) at T= 200 K and zero Dzyaloshinskii−Moriya interaction
(DMI). Solid black lines are the boundaries between different topological
phases characterized by the Chern numbers of the three magnon branches.
b κxyONE as a function of B and temperature T for the model with DMI
strength of 0.2J1. c, d Comparison of the κxyONE (solid lines) and magnon
Nernst conductivity κxyN (dashed lines). c κxyONE and κxyN as a function of B for
the model at 200 K with DMI strength of 0 (red) and 0.2J1 (blue). The
different topological phases are distinguished with a thin vertical line.
d κxyONE and κxyN as a function of T for different strengths of the DMI and B.

COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-020-00490-3 ARTICLE

COMMUNICATIONS PHYSICS |           (2020) 3:227 | https://doi.org/10.1038/s42005-020-00490-3 | www.nature.com/commsphys 5

www.nature.com/commsphys
www.nature.com/commsphys


fundamentally distinct contribution that we coin the orbital
Nernst effect of magnons, which is illustrated in Fig. 1a. The
phenomenon of orbital Nernst effect relates spatial temperature
gradients to the emergence of topological orbital currents via
jTOMx ¼ κxyONEð∇TÞy , where κxyONE stands for the topological orbital
Nernst conductivity, which within the semiclassical theory reads

κxyONE ¼ � kB
4π2μB

X
n

Z
BZ

c1ðnBðϵnkÞÞ Ωxy
nkL

TOM
nk dk; ð5Þ

where c1ðτÞ ¼
R τ
0 ln ½ð1þ tÞ=t�dt ¼ ð1þ τÞln ð1þ τÞ � τln τ. In

essence, the latter relation quantifies the fundamental mechanism
behind a magnon—which develops a transverse velocity propor-
tional to the Berry curvature in an applied temperature gradient
—“dragging” with it the electronic orbital angular momentum
which is generated by non-zero SSC inherent to the magnon. In
contrast to the usual spin Nernst effect of magnons10,16,51, the
conductivity in Eq. (5) characterizing the orbital Nernst effect
depends explicitly on the local TOM of the magnon branches (see
Supplementary Note 1).

Answering the second fundamental question posed in the
introduction, below we reveal the existence of this effect by
explicit calculation. In Fig. 4 we summarize the nontrivial
dependence of the orbital Nernst effect on T and on the model
parameters, as well as its correlation with the topology of the
magnon bands. Although the orbital Nernst effect has a distinct
microscopic origin in the orbital electron−magnon coupling, our
prediction is that the corresponding conductivity can reach the
order of π−1kB. If we assume a distance of 5Å between two
kagome layers, an orbital Nernst conductivity of (2π)−1kB is
equivalent to the value 4.394 × 10−15 Jm−1 K−1, or 66,786 ℏe−1

μA cm−1 K−1, which is comparable to the values known for the
spin Nernst effect of magnons or spin Nernst effect of
electrons10,16,52–55. We emphasize that the magnitude of the
effect can be further enhanced by proper electronic structure
engineering of the topological orbital susceptibility, which in its
nature does not rely on the presence of spin−orbit interaction in
the system. This underlines the strong potential of the orbital
Nernst effect for the realm of spincaloritronics and marks this
effect as an entry point for ideas evolving around magnon-
mediated orbitronics.

Our analysis, which is supported by our calculation (see Fig. 4 and
Supplementary Note 1), reveals that both DMI and the coupling of
external magnetic field to the SSC can generate a finite orbital
Nernst conductivity. Comparing the two panels in more detail, we
note that the sign of κxyONE is the same in topological phases for
which the sets of Chern numbers differ by a global sign. This
invariance stems from the product of the two microscopic quantities
in Eq. (5), each of which changes its individual sign as the Chern
numbers are reversed. Still, as exemplified in Fig. 4a−c, the orbital
Nernst effect is characteristic to the nontrivial magnon topology of
distinct phases. Close to topological phase transitions, the orbital
Nernst effect changes abruptly and thus behaves rather differently
compared to thermal Hall and magnon Nernst effects (see Fig. 4c
and Supplementary Fig. 11). As a consequence, the conductivity
κxyONE can in principle reach very large values near the phase
boundary. Since the orbital Nernst effect is absent without the B-
field and DMI (see Supplementary Fig. 9a), the peak structure in
Fig. 4b, c for a magnetic field of about 7 T can be understood as a
result of the competition between the effects of orbital Zeeman
coupling and DMI, which results in a strongly suppressed orbital
Nernst effect. On the other hand, Fig. 4d and Supplementary Fig. 9b
reveal the qualitative difference in the temperature dependence of
the orbital Nernst effect and conventional Nernst effect. The peculiar
behavior of the orbital Nernst effect in response to an external
magnetic field can be used to disentangle it from the magnon Nernst

effect experimentally. Overall, the orbital Nernst effect presents a
unique playground for generating orbital currents in magnonic
systems, and we outline the prospects of this effect below.

Discussion
While in our work we consider ferromagnets on a kagome lattice,
among material representatives of which one can name for
example Cu(1-3,bdc)56 or Nd3Sb3Mg2O14

57, the conclusions
drawn from our analysis go well beyond this particular class of
materials, and include for instance collinear or noncollinear states
on a hexagonal, pyrochlore, B20 and Mn3Ge quasi-kagome type
of lattice36,38,58–60, as well as their thin films. While in the latter
classes the magnon drag of orbital momentum is nonvanishing, a
precursor of prominent magnon-driven orbital phenomena is a
large topological orbital susceptibility κTO in a given material of
the order of that exhibited, e.g., by MnGe38, Mn/Cu(111)36, or
Mn3Ge39. The latter quantity can be estimated from microscopic
calculations, as well as from experiment, as to first approximation
κTO is given by the orbital susceptibility of the system28.

To show this explicitly, we extract the rough magnitude of κTO

from existing calculations and specifically consider the case of
Mn3Ge39, exhibiting an almost coplanar noncollinear arrange-
ment of spins. By using the exchange parameters used to fit the
experimental magnonic spectra, and taking into account a small
canting of spins in Mn3Ge in an external magnetic field (see
Supplementary Note 2 and Supplementary Figs. 12−17 for a
detailed discussion), in Fig. 5 we provide the orbital analysis of
the bands, and the estimates for the magnon, κxyN , and orbital,
κxyONE, Nernst conductivities in this material as a function of
temperature. Our calculations show that in Mn3Ge the magnitude
of magnonic and orbital contributions to the transverse thermal
currents is comparable and sizeable. As both contributions are
opposite in sign, this potentially gives rise to a nontrivial
dependence of the overall current of angular momentum on
temperature, which can be accessed experimentally. This signifies
the potential relevance of discussed here orbital effects for wide
classes of diverse magnetic materials.

The uncovered mechanism of magnon-driven chirality accumu-
lation has far-reaching consequences for the transport properties of

Fig. 5 Orbital Nernst effect in Mn3Ge. a Fat band analysis for the magnonic
bands of Mn3Ge with the canting angle η= 1°. Red and blue colors
represent positive and negative sign of the local topological orbital moment
(TOM) LTOMnk , respectively, and the line thickness denotes the
corresponding magnitude. b Comparison between the magnon Nernst
conductivity (dotted line) and orbital Nernst conductivity (solid line) as the
function of temperature for Mn3Ge. Different color represents two different
canting angles η= 0.4° (red color) and η= 1° (black color). The unit of
Nernst conductivity in (b) is 103ℏe−1μA (cm)−1 K−1. The schematic sketch
of the magnetic structure of Mn3Ge is shown in the inset.
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systems which exhibit such chirality. For example, it will result in the
generation of topological Hall or topological spin Hall effect of the
underlying electronic bath61–63, which will contribute to the tem-
perature dependence of the anomalous Hall conductivity even in
nominally collinear magnets64. On the other hand, magnon-driven
orbital magnetism brings the orbital angular momentum variable
into the game of magnon-based spincaloritronics, which is con-
ventionally associated with generation and transport of spin.
Unleashing the orbital channel for the magnon-mediated effects
poses a key question of the role of orbital magnetism for the
temperature-dependent magnetization dynamics; however, it also
opens a number of exciting possibilities for direct applications. For
example, in analogy to the spin−orbit torques18,20, we envisage that
the flow of orbital angular momentum generated by magnons can
be used to generate sizeable orbital accumulation and orbital torques
on adjacent magnets, which can go either via the mechanism of
direct injection of the orbital current into the ferromagnet, or might
involve an intermediate conversion of the orbital current into the
spin current with the magnitude of the converted spin current larger
by far than that driven by the local spin Hall effect23,24,50.

Given the sensitivity of the orbital effects to the topology of
magnonic bands and generally magnonic properties, we suggest
that accessing the magnon-mediated dynamics of orbital prop-
erties can serve as a unique tool of tracking the topological
dynamics of magnons. Moreover, our findings also point at an
exciting possibility of exploiting properly engineered orbital
injection for excitation of specific magnonic modes via the inverse
orbital Nernst effect. As in topologically complex materials the
electronic topology is directly related to the orbital properties65,
this link can be used for realizing hybrid nontrivial electron
−magnon topologies. Overall, here, the uncovered orbital elec-
tron−magnon coupling bares various prospects for integration of
spinorbitronics schemes into magnonic setups and vice versa,
which shall be explored in the future.

Methods
Calculation of electronic TOM. For the calculation of the electronic structure and
resulting TOM, we employ a tight-binding model on a two-dimensional kagome
lattice. The Hamiltonian consists of hoppings and local exchange interactions,

H ¼ t1
X
hi;ji

cyi cj þ t2
X
hhi;jii

cyi cj þ J
X
i

m̂i � σ; ð6Þ

where i and j are site indices, 〈 ⋯ 〉 and 〈〈 ⋯ 〉〉 indicate first and second nearest-
neighbor pairs, respectively, and m̂i is the direction of the local magnetic moment at
site i. The first and second nearest hopping amplitudes are chosen as t1= 1.0 eV and
t2= 0.15 eV, respectively, and strength of the exchange interaction is set to J= 1.7 eV.
For three basis atoms in the unit cell, namely A, B, and C, the directions of the local
magnetic moments are parameterized by m̂i ¼ ðsin θ cos ϕi; sin θ sinϕi; cos θÞ. The
azimuthal angles ϕi are assumed to be chirally ordered, i.e., ϕi= ϕ0 for i∈A, ϕi= ϕ0
+ 2π/3 for i∈ B, and ϕi= ϕ0+ 4π/3 for i∈C. For the fitting of the TOM in Fig. 2b,
we assume

LTOM
z ðθÞ ¼ κTOm̂A � ðm̂B ´ m̂CÞ ¼

3
ffiffiffi
3

p

2
κTO cos θsin2θ: ð7Þ

To extract κTO near θ= 0 (inset of Fig. 2b), we use

κTO ¼ 2

3
ffiffiffi
3

p d2LTOMz

dθ2

����
θ¼0

; ð8Þ

where the second derivative is evaluated by a finite difference method.

Linear spin-wave theory. Linear spin-wave theory55,66 is used to obtain the
eigenvalues and eigenvectors of the above Hamiltonian, which we reformulate first
in terms of bosonic ladder operators ai and ayi via the Holstein−Primakoff
transformation67. In the resulting spin-wave Hamiltonian, we keep only terms that
are quadratic in the ladder operators. This approximation has been used before to
treat the effect of chirality47. Within linear theory, the SSC χijk, coupling directly to
the magnetic field in Eq. (3), can be expressed as47:

χijk ¼
i
S
ðayi aj � aia

y
j þ ayj ak � aja

y
k þ aykai � aka

y
i Þ : ð9Þ

To map from real to momentum space, we perform a Fourier transform of the
bosonic ladder operators, which leads to the Hamiltonian matrix H(k) at the spin-
wave vector k= (kx, ky), which is diagonalized to obtain the eigenvectors and the
energy spectrum of the spin waves. We address the topological character of the
magnonic bands by computing the Chern number Cn, given by Cn ¼ 1

2π

R
Ωxy

nk dk,
where the integral is performed over the Brillouin zone (BZ), and Ωxy

nk represents
the magnon Berry curvature of the nth spin-wave branch:

Ωxy
nk ¼ �2 Im

X
m≠n

Ψnk j ∂H kð Þ
∂kx

jΨmk

D E
Ψmk j ∂H kð Þ

∂ky
jΨnk

D E

ϵnk � ϵmkð Þ2 ; ð10Þ

where Ψnkj i is an eigenstate of the spin-wave Hamiltonian with the energy ϵnk (see
Supplementary Methods).

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.
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