000888588 001__ 888588
000888588 005__ 20220126162603.0
000888588 0247_ $$2doi$$a10.1080/15592324.2020.1776477
000888588 0247_ $$2ISSN$$a1559-2316
000888588 0247_ $$2ISSN$$a1559-2324
000888588 0247_ $$2pmid$$a32508236
000888588 0247_ $$2WOS$$aWOS:000592247000012
000888588 037__ $$aFZJ-2020-05044
000888588 041__ $$aEnglish
000888588 082__ $$a580
000888588 1001_ $$0P:(DE-HGF)0$$aKutschera, Ulrich$$b0$$eCorresponding author
000888588 245__ $$aThe Warburg-effects: basic metabolic processes with reference to cancer development and global photosynthesis
000888588 260__ $$aAustin, Tex.$$bLandes Bioscience$$c2020
000888588 3367_ $$2DRIVER$$aarticle
000888588 3367_ $$2DataCite$$aOutput Types/Journal article
000888588 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1641883889_27838
000888588 3367_ $$2BibTeX$$aARTICLE
000888588 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000888588 3367_ $$00$$2EndNote$$aJournal Article
000888588 520__ $$aOne century ago (1920), Otto Warburg (1883–1970) discovered that in liquid cultures of unicellular green algae (Chlorella sp.) molecular oxygen (O2) exerts an inhibitory effect on photosynthesis. Decades later, O2 dependent suppression of photosynthetic carbon dioxide (CO2) assimilation (the “green” Warbur geffect) was confirmed on the leaves of seed plants. Here, we summarize the history of this discovery and elucidate the consequences of the photorespiratory pathway in land plants with reference to unpublished CO2 exchange data measured on the leaves of sunflower (Helianthus annuus) plants. In addition, we discuss the inefficiency of the key enzyme Rubisco and analyze data concerning the productivity of C3 vs. C4 crop species (sunflower vs. maize, Zea mays). Warburg’s discovery inaugurated a research agenda in the biochemistry of photosynthetic CO2 assimilation that continues to the present. In addition, we briefly discuss Warburg’s model of metabolic processes in cancer, net primary production (global photosynthesis) with respect to climate change, trees and other land plants as CO2 removers, and potential climate mitigators in the Anthropocene.
000888588 536__ $$0G:(DE-HGF)POF3-582$$a582 - Plant Science (POF3-582)$$cPOF3-582$$fPOF III$$x0
000888588 536__ $$0G:(DE-HGF)POF4-2171$$a2171 - Biological and environmental resources for sustainable use (POF4-217)$$cPOF4-217$$fPOF IV$$x1
000888588 588__ $$aDataset connected to CrossRef
000888588 7001_ $$0P:(DE-Juel1)129379$$aPieruschka, Roland$$b1$$ufzj
000888588 7001_ $$0P:(DE-HGF)0$$aFarmer, Steve$$b2
000888588 7001_ $$00000-0002-5849-6438$$aBerry, Joseph A.$$b3
000888588 773__ $$0PERI:(DE-600)2252855-6$$a10.1080/15592324.2020.1776477$$gVol. 15, no. 7, p. 1776477 -$$n7$$p1776477 -$$tPlant signaling & behavior$$v15$$x1559-2324$$y2020
000888588 8564_ $$uhttps://juser.fz-juelich.de/record/888588/files/The%20Warburg-effects.pdf$$yRestricted
000888588 909CO $$ooai:juser.fz-juelich.de:888588$$pVDB
000888588 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129379$$aForschungszentrum Jülich$$b1$$kFZJ
000888588 9131_ $$0G:(DE-HGF)POF3-582$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vPlant Science$$x0
000888588 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2171$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x1
000888588 9132_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2173$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0
000888588 9141_ $$y2020
000888588 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPLANT SIGNAL BEHAV : 2018$$d2020-09-05
000888588 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-05
000888588 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-05
000888588 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2020-09-05
000888588 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-05
000888588 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-05
000888588 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2020-09-05
000888588 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2020-09-05
000888588 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2020-09-05
000888588 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-05
000888588 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-05
000888588 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-09-05
000888588 920__ $$lyes
000888588 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x0
000888588 980__ $$ajournal
000888588 980__ $$aVDB
000888588 980__ $$aI:(DE-Juel1)IBG-2-20101118
000888588 980__ $$aUNRESTRICTED