001     888588
005     20220126162603.0
024 7 _ |a 10.1080/15592324.2020.1776477
|2 doi
024 7 _ |a 1559-2316
|2 ISSN
024 7 _ |a 1559-2324
|2 ISSN
024 7 _ |a 32508236
|2 pmid
024 7 _ |a WOS:000592247000012
|2 WOS
037 _ _ |a FZJ-2020-05044
041 _ _ |a English
082 _ _ |a 580
100 1 _ |a Kutschera, Ulrich
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a The Warburg-effects: basic metabolic processes with reference to cancer development and global photosynthesis
260 _ _ |a Austin, Tex.
|c 2020
|b Landes Bioscience
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1641883889_27838
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a One century ago (1920), Otto Warburg (1883–1970) discovered that in liquid cultures of unicellular green algae (Chlorella sp.) molecular oxygen (O2) exerts an inhibitory effect on photosynthesis. Decades later, O2 dependent suppression of photosynthetic carbon dioxide (CO2) assimilation (the “green” Warbur geffect) was confirmed on the leaves of seed plants. Here, we summarize the history of this discovery and elucidate the consequences of the photorespiratory pathway in land plants with reference to unpublished CO2 exchange data measured on the leaves of sunflower (Helianthus annuus) plants. In addition, we discuss the inefficiency of the key enzyme Rubisco and analyze data concerning the productivity of C3 vs. C4 crop species (sunflower vs. maize, Zea mays). Warburg’s discovery inaugurated a research agenda in the biochemistry of photosynthetic CO2 assimilation that continues to the present. In addition, we briefly discuss Warburg’s model of metabolic processes in cancer, net primary production (global photosynthesis) with respect to climate change, trees and other land plants as CO2 removers, and potential climate mitigators in the Anthropocene.
536 _ _ |a 582 - Plant Science (POF3-582)
|0 G:(DE-HGF)POF3-582
|c POF3-582
|f POF III
|x 0
536 _ _ |a 2171 - Biological and environmental resources for sustainable use (POF4-217)
|0 G:(DE-HGF)POF4-2171
|c POF4-217
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Pieruschka, Roland
|0 P:(DE-Juel1)129379
|b 1
|u fzj
700 1 _ |a Farmer, Steve
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Berry, Joseph A.
|0 0000-0002-5849-6438
|b 3
773 _ _ |a 10.1080/15592324.2020.1776477
|g Vol. 15, no. 7, p. 1776477 -
|0 PERI:(DE-600)2252855-6
|n 7
|p 1776477 -
|t Plant signaling & behavior
|v 15
|y 2020
|x 1559-2324
856 4 _ |u https://juser.fz-juelich.de/record/888588/files/The%20Warburg-effects.pdf
|y Restricted
909 C O |o oai:juser.fz-juelich.de:888588
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129379
913 1 _ |a DE-HGF
|b Key Technologies
|l Key Technologies for the Bioeconomy
|1 G:(DE-HGF)POF3-580
|0 G:(DE-HGF)POF3-582
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-500
|4 G:(DE-HGF)POF
|v Plant Science
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-217
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten
|9 G:(DE-HGF)POF4-2171
|x 1
913 2 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-217
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten
|9 G:(DE-HGF)POF4-2173
|x 0
914 1 _ |y 2020
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PLANT SIGNAL BEHAV : 2018
|d 2020-09-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-09-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-09-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2020-09-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-09-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-09-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2020-09-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2020-09-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2020-09-05
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-09-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-09-05
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-09-05
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-2-20101118
|k IBG-2
|l Pflanzenwissenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBG-2-20101118
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21