001     888589
005     20210623133418.0
024 7 _ |a 10.1007/s11940-021-00664-6
|2 doi
024 7 _ |a 1092-8480
|2 ISSN
024 7 _ |a 1534-3138
|2 ISSN
024 7 _ |a 2128/27129
|2 Handle
024 7 _ |a WOS:000613714400001
|2 WOS
024 7 _ |a altmetric:100296470
|2 altmetric
037 _ _ |a FZJ-2020-05045
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Galldiks, Norbert
|0 P:(DE-Juel1)143792
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Imaging of response to radiosurgery and immunotherapy in brain metastses: Quo vadis?
260 _ _ |a Philadelphia, Pa.
|c 2021
|b Current Science Inc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1612786000_15570
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Purpose of ReviewThis review presents an overview of how advanced imaging techniques may help to overcome shortcomings of anatomical MRI for response assessment in patients with brain metastases who are undergoing stereotactic radiosurgery, immunotherapy, or combinations thereof.Recent FindingsStudy results suggest that parameters derived from amino acid PET, diffusion- and perfusion-weighted MRI, MR spectroscopy, and newer MRI methods are particularly helpful for the evaluation of the response to radiosurgery or checkpoint inhibitor immunotherapy and provide valuable information for the differentiation of radiotherapy-induced changes such as radiation necrosis from brain metastases. The evaluation of these imaging modalities is also of great interest in the light of emerging high-throughput analysis methods such as radiomics, which allow the acquisition of additional data at a low cost.SummaryPreliminary results are promising and should be further evaluated. Shortcomings are different levels of PET and MRI standardization, the number of patients enrolled in studies, and the monocentric and retrospective character of most studies.
536 _ _ |a 525 - Decoding Brain Organization and Dysfunction (POF4-525)
|0 G:(DE-HGF)POF4-525
|c POF4-525
|x 0
|f POF IV
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Jan-Michael, Werner
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Lohmann, Philipp
|0 P:(DE-Juel1)145110
|b 2
|u fzj
700 1 _ |a Kocher, Martin
|0 P:(DE-Juel1)173675
|b 3
|u fzj
700 1 _ |a Fink, Gereon Rudolf
|0 P:(DE-Juel1)131720
|b 4
|u fzj
700 1 _ |a Langen, Karl-Josef
|0 P:(DE-Juel1)131777
|b 5
|u fzj
773 _ _ |a 10.1007/s11940-021-00664-6
|g Vol. 23, no. 3, p. 7
|0 PERI:(DE-600)2076603-8
|n 3
|p 7
|t Current treatment options in neurology
|v 23
|y 2021
|x 1092-8480
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/888589/files/Galldiks_2020_Current%20Treatment%20Options%20in%20%20Neurology_Imaging%20of%20response%20to..._post%20print.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/888589/files/Galldiks_2021_Current_Treatment_Options_in_Neurology_Imaging%20of%20response%20to%20radiosurgery....pdf
909 C O |o oai:juser.fz-juelich.de:888589
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)143792
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)145110
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)173675
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)131720
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)131777
913 0 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-572
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-500
|4 G:(DE-HGF)POF
|v (Dys-)function and Plasticity
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-08-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-08-18
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CURR TREAT OPTION NE : 2018
|d 2020-08-18
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-08-18
915 _ _ |a DEAL Springer
|0 StatID:(DE-HGF)3002
|2 StatID
|d 2020-08-18
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-08-18
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-08-18
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-08-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2020-08-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-08-18
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-3-20090406
|k INM-3
|l Kognitive Neurowissenschaften
|x 0
920 1 _ |0 I:(DE-Juel1)INM-4-20090406
|k INM-4
|l Physik der Medizinischen Bildgebung
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-3-20090406
980 _ _ |a I:(DE-Juel1)INM-4-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21