001     888594
005     20240712100913.0
024 7 _ |a 10.1029/2020JD033137
|2 doi
024 7 _ |a 0148-0227
|2 ISSN
024 7 _ |a 2156-2202
|2 ISSN
024 7 _ |a 2169-897X
|2 ISSN
024 7 _ |a 2169-8996
|2 ISSN
024 7 _ |a 2128/26995
|2 Handle
024 7 _ |a altmetric:97241841
|2 altmetric
024 7 _ |a WOS:000616529300006
|2 WOS
037 _ _ |a FZJ-2020-05050
082 _ _ |a 550
100 1 _ |a Adcock, Karina E.
|0 0000-0002-8224-5399
|b 0
|e Corresponding author
245 _ _ |a Aircraft‐based observations of ozone‐depleting substances in the upper troposphere and lower stratosphere in and above the Asian summer monsoon\
260 _ _ |a Hoboken, NJ
|c 2021
|b Wiley
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1636545843_7654
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Recent studies show that the Asian Summer Monsoon Anticyclone (ASMA) transports emissions from the rapidly industrializing nations in Asia into the tropical upper troposphere. Here we present a unique set of measurements on over 100 air samples collected on multiple flights of the M55 Geophysika high altitude research aircraft over the Mediterranean, Nepal and northern India during the summers of 2016 and 2017 as part of the European Union project StratoClim. These air samples were measured for 27 ozone‐depleting substances (ODSs), many of which were enhanced above expected levels, including the chlorinated very short‐lived substances, dichloromethane (CH2Cl2), 1,2‐dichloroethane (CH2ClCH2Cl) and chloroform (CHCl3). CH2Cl2 mixing ratios in the tropopause region were 65‐136 ppt in comparison to previous estimates of mixing ratios in the tropical tropopause layer of 30‐44 ppt in 2013‐2014. Backward trajectories, calculated with the trajectory module of the chemistry‐transport model CLaMS and driven by the ERA5 reanalysis, indicate possible source regions of CH2Cl2 in South Asia. We derived total Equivalent Chlorine (ECl), and Equivalent Effective Stratospheric Chlorine (EESC) and found that these quantities were substantially higher than previous estimates in the literature. EESC at mean age‐of‐air of 3 years based on the 2016 measurements was 1861‐1872 ppt in comparison to a previously estimated EESC of 1646 ppt. Our findings show that the ASMA transports larger than expected mixing ratios of long‐lived and very short‐lived ODSs into the upper troposphere and lower stratosphere, likely leading to an impact on the stratospheric ozone layer.
536 _ _ |a 2112 - Climate Feedbacks (POF4-211)
|0 G:(DE-HGF)POF4-2112
|c POF4-211
|f POF IV
|x 0
536 _ _ |a STRATOCLIM - Stratospheric and upper tropospheric processes for better climate predictions (603557)
|0 G:(EU-Grant)603557
|c 603557
|f FP7-ENV-2013-two-stage
|x 1
536 _ _ |a EXC3ITE - EXploring Chemistry, Composition and Circulation in the stratosphere with Innovative TEchnologies (678904)
|0 G:(EU-Grant)678904
|c 678904
|f ERC-2015-STG
|x 2
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Fraser, Paul J.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Hall, Brad D.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Langenfelds, Ray L.
|0 0000-0003-4890-2049
|b 3
700 1 _ |a Lee, Geoffrey
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Montzka, Stephen A.
|0 0000-0002-9396-0400
|b 5
700 1 _ |a Oram, David E.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Röckmann, Thomas
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Stroh, Fred
|0 P:(DE-Juel1)129158
|b 8
700 1 _ |a Sturges, William T.
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Vogel, Bärbel
|0 P:(DE-Juel1)129164
|b 10
700 1 _ |a Laube, Johannes C.
|0 P:(DE-Juel1)177681
|b 11
773 _ _ |a 10.1029/2020JD033137
|0 PERI:(DE-600)2016800-7
|n 1
|p e2020JD033137
|t Journal of geophysical research / D
|v 126
|y 2021
|x 2169-8996
856 4 _ |u https://juser.fz-juelich.de/record/888594/files/2020JD033137.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/888594/files/Adcock-Monsoon-2020JGR.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:888594
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)129158
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)129164
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)177681
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-211
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Die Atmosphäre im globalen Wandel
|9 G:(DE-HGF)POF4-2112
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-09-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-09-06
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J GEOPHYS RES-ATMOS : 2018
|d 2020-09-06
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2020-09-06
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-09-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-09-06
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-09-06
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-09-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-09-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-09-06
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-7-20101013
|k IEK-7
|l Stratosphäre
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-7-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)ICE-4-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21