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Nonreciprocity of spin waves in noncollinear magnets due to the Dzyaloshinskii-Moriya interaction

Flaviano José dos Santos ®,'-2-* Manuel dos Santos Dias®,! and Samir Lounis ®'

! Peter Griinberg Institut and Institute for Advanced Simulation, Forschungszentrum Jiilich and JARA, D-52425 Jiilich, Germany

2Department of Physics, RWTH Aachen University, 52056 Aachen, Germany
M (Received 25 March 2020; revised 19 August 2020; accepted 19 August 2020; published 1 September 2020)

Broken inversion symmetry in combination with the spin-orbit interaction generates a finite Dzyaloshinskii-
Moriya interaction (DMI), which can induce noncollinear spin textures of chiral nature. The DMI is characterized
by an interaction vector whose magnitude, direction, and symmetries are crucial to determine the stability of
various spin textures, such as skyrmions and spin spirals. The DMI can be measured from the nonreciprocity of
spin waves in ferromagnets, which can be probed via inelastic scattering experiments. In a ferromagnet, the DMI
can modify the spin-wave dispersion, moving its minimum away from the I" point. Spin waves propagating with
opposite wave vectors are then characterized by different group velocities, energies, and lifetimes, defining their
nonreciprocity. Here, we address the case of complex spin textures, where the manifestation of DMI-induced
chiral asymmetries remains to be explored. We discuss such nonreciprocal effects and propose ways of accessing
the magnitude and direction of the DMI vectors in the context of spin-polarized or spin-resolved inelastic
scattering experiments. We show that only when a periodic magnetic system has finite net magnetization, that is,
when the vector sum of all magnetic moments is nonzero, can it present a total nonreciprocal spin-wave spectrum.
However, even zero-net-magnetization systems, such as collinear antiferromagnets and cycloidal spin spirals, can

have spin-wave modes that are individually nonreciprocal, while the total spectrum remains reciprocal.
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I. INTRODUCTION

In Ref. [1] Anderson discusses the importance of sym-
metry breaking in nature. Since then, there has been an
ever-growing interest in the symmetries and symmetry
breaking of condensed-matter systems. An example is the
Dzyaloshinskii-Moriya interaction (DMI), which originates
from the combination of broken inversion symmetry with the
spin-orbit interaction [2,3]. The DMI is a chiral interaction
introducing a vector coupling between two spin moments,
Dy, - (S; x S,), which favors one sense of rotation of the
spins. Thus, some static and dynamical physical properties
of magnetic materials can acquire the chirality of the DMI.
For example, spin-polarized scanning tunneling microscopy
revealed that spin spirals with a unique rotational sense are
present in a single atomic layer of manganese deposited on
tungsten [4,5]. Also, when a spin-wave current is driven by
a thermal gradient, the DMI can lead to the magnon Hall
effect [6]. In ferromagnetic materials, the DMI can impart a
fixed chirality to the domain walls, which can then be moved
very efficiently with applied currents [7,8], and the domain
walls themselves can be seen as fundamental building blocks
for magnonic logic [9-11]. Moreover, the DMI is often the
stabilizing mechanism for magnetic skyrmions, which are
noncollinear spin textures with particlelike properties cur-
rently under heavy investigation as potential future bits for
data storage devices [12-18]. Whether a skyrmion or an an-
tiskyrmion (spin textures with the same polarity but opposite
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vorticity [19]) can be stabilized is determined by the chirality
and symmetries of the DMI [20-22]. Thus, the knowledge of
the DMI is essential to understand, design, and control many
properties of magnetic systems. However, the DMI itself can-
not be directly measured. Instead, we observe DMI-dependent
properties, which in turn allow us to obtain information about
the DMI for a particular system. Therefore, it is crucial to
discover better and more complete ways to experimentally
characterize this interaction in complex magnetic materials,
as a way of exploiting chirality-dependent effects [23].

The theoretical realization that the spin-wave dispersion of
ferromagnets can acquire an asymmetry due to the DMI was
put forth by Udvardi and Szunyogh [24] and Costa et al. [25].
The key requirement is that the magnetization and the DMI
vectors are not perpendicular, which then leads to the non-
reciprocity of the spin-wave dispersion (its energy minimum
shifts away from the I" point) (see Fig. 1). This means that the
energies of spin waves with wave vectors of equal magnitude
and opposite directions are no longer degenerate. However, if
the magnetization lies in a plane of mirror symmetry, the spin-
wave dispersion remains reciprocal for wave vectors along the
magnetization direction, as the effective DMI has to vanish in
that case, due to Moriya’s rules. Other authors have theoret-
ically proposed to characterize the DMI from the spin-wave
properties of thin films [26-28]. These seminal papers have
opened a route to experimentally probe the DMI in ferro-
magnetic materials: the strength and chirality of the DMI can
be deduced from the measured asymmetry of the spin-wave
dispersion, for instance, by fitting the data to a Heisenberg
model Hamiltonian. The chirality can be measured because it
defines the direction in which the minimum of the spin-wave
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(a) Magnetization

vectors

FIG. 1. The shift of the spin-wave dispersion due to the DMI in ferromagnets. (a) In our convention, the magnetization direction of a
ferromagnet is given by the direction of the spins. (b) Fragment of a square lattice showing the Dzyaloshinskii-Moriya-interaction vectors
between the central atom and its neighbors, all lying in the plane. (c) The DMI components along the magnetization direction, shown in red in
(b), induce an asymmetry of the spin-wave dispersion curve, which shifts sideways. Spin waves with opposite wave vectors q and —q are no
longer degenerate, such as in the absence of the DMI (indicated by the gray dotted line). Measuring the location of the new energy minimum

8k provides the chirality (spatial orientation) and magnitude of the DMI.

dispersion shifts away from the I" point. It is worth mentioning
that there are other sources of nonreciprocity, such as dipolar
interactions for surface magnetostatic modes [29-31], and the
theoretical proposal of combining a noncollinear magnetic
structure with an applied external field [32].

There are different experimental techniques able to probe
spin waves, such as inelastic scattering with electrons, neu-
trons, or light, or broadband spectroscopy using coplanar
waveguides, each with their capabilities and limitations. In
Ref. [33], Zakeri et al. used spin-polarized electron energy-
loss spectroscopy (SPEELS) [34-38] to experimentally detect
the shift of the spin-wave dispersion due to the DMI in
thin films of Fe/W(110). The same principles have proven
a fruitful way of accessing the DMI when applied to Bril-
louin light scattering experiments in thin-film systems [39-44]
and to inelastic neutron scattering in bulk materials [45—48],
with broadband spectroscopy as alternative [49-55]. Simi-
larly, nonreciprocity was observed in antiferromagnets, but
only when subjected to an external magnetic field [56].
We have recently proposed spin-resolved EELS (SREELS),
which consists of a SPEELS setup augmented with a spin
filter for the scattered electrons [57]. Within SREELS, one
has access to various spin-scattering channels, where the scat-
tered electrons can either have their spins flipped or not. In
contrast to collinear magnets, where only spin-flip processes
are responsible for the emission of spin waves, non-spin-
flip processes can generate spin excitations in noncollinear
materials [57].

In this work, we use simple atomistic spin-lattice models
to provide a complete characterization of the nonrecipro-
cal effects in the spin-wave spectrum of complex magnetic
structures. We show that the angular momentum of a given
spin-wave mode can be associated with its handedness, a
chirality attribute that allows us to predict the effect of the
DMI for that mode. Furthermore, we demonstrate that only

systems with finite total magnetization can feature a nonre-
ciprocal total spin-wave spectrum, e.g., when considering the
spin-wave energies of all modes. Moreover, this nonreciproc-
ity is observed on the reciprocal-space directions where the
Fourier-transformed DMI vectors have finite projections on
the magnetization. In zero-net-magnetization systems, despite
the lack of nonreciprocity of the total spin-wave spectrum,
we uncover that individual spin-wave modes can be nonre-
ciprocal. These nonreciprocal modes usually come in pairs,
each with opposite angular momentum leading to their dis-
persion curves to shift in opposite directions while keeping
the total spin-wave spectrum reciprocal. We also prove that
spin-polarized experiments, such as SPEELS, SREELS, or
polarized inelastic neutron scattering, can be used to re-
veal the DMI-induced nonreciprocity of individual spin-wave
modes in noncollinear materials. The nonreciprocity in prac-
tice leads to an asymmetric scattering rate for opposite wave
vectors, which only appears when the probing-beam polar-
ization aligns with a spin-wave angular momentum probing
the Fourier-transformed DMI components parallel to them.
Furthermore, we show that the angular momenta of the spin-
wave modes are strongly related to the DMI, that is, they are
given not only by the spin configuration, but they are also
directly influenced by the DMI itself. Thus, SREELS and
SPEELS measurements would allow determining the chiral-
ity of the Dzyaloshinskii-Moriya interaction, which could be
used to distinguish a skyrmion from an antiskyrmion lattice,
for example.

II. THEORETICAL FRAMEWORK AND MODEL SYSTEMS

To clarify the interplay between the DMI, the ground-state
magnetic structure, and the properties of its spin-wave spec-
trum, we adopt two very simple spin models that allow us
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FIG. 2. The two model systems considered in this work. Both consist of a square lattice with nearest-neighbor interactions only. The
exchange interaction is the same for both models, but (a) model I has DMI vectors perpendicular to the bonds and swirling counterclockwise,
while (b) model II has DMI vectors diverging from the sites being parallel to the bonds. Model I has a cycloidal spin spiral as its ground state,
while model II realizes a helical spiral. (c) Brillouin zone with its high-symmetry points and our choice of the frame of reference: The Y-I'-Y

path is along § and X-I"-X is along X.

to explore all of the involved aspects. These are based on
the following generalized classical Heisenberg model, whose
Hamiltonian reads as

HZ_%;(JijSi'Sj'FDij'SiXSj)_Xi:B'Sia (1)
where J;; is the magnetic exchange interaction parameter, D;;
is the Dzyaloshiskii-Moriya interaction vector between sites
i and j, and B is a uniform external magnetic field. We take
a square lattice (lattice constant a) for both models, with the
magnetic interactions restricted to nearest neighbors. The J;;
are identical in both models (J for all nearest neighbors), but
the set of D;; vectors differs (note that D;; = —D;;): model I
has typical interfacial DMI vectors perpendicular to the bond
connecting the corresponding sites, lying in the plane of the
lattice and swirling counterclockwise [see Fig. 2(a)]; model
II has bulklike DMI vectors which are parallel to the bonds,
also lying in plane and radiating outward from the site i to
its neighbors [see Fig. 2(b)]. Figure 2(c) shows the square-
lattice Brillouin zone marking its high-symmetry points. For
the simulation presented throughout the paper, we took the
parameterstobe J = 1,D = 1,and S = 1.

We find the ground-state spin configuration for models I
and II using atomistic spin dynamics simulations by solving
the Landau-Lifshitz-Gilbert (LLG) equation with the SPIRIT
code [58]. Using a unit cell of 8 x § atoms, one obtains for
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model I a cycloidal spin spiral [see Fig. 3(a)] and a helical
spin spiral for model II [Fig. 3(b)]. In these figures, the wave
vector Q = (27t /8)¥ of the spin spirals is along §, however,
the spin spirals with wave vector along X are also possible,
which are degenerate to the ones we are showing. By adding
an external magnetic field normal to the film in model I, we
can stabilize a skyrmion lattice as shown in Fig. 3(c). In this
case, the square arrangement of skyrmions is imposed by the
choice of the unit cell. The direction of the net magnetization
of any spin texture will be denoted by n°.

The spin-wave excitations are computed out of the self-
consistently determined classical ground state in the adiabatic
approximation, as explained in detail in Ref. [57]. The classi-
cal ground state is specified by a set of spherical angles {6;, ¢;}
which encode the local spin direction on every site. We then
construct local coordinate systems for every site with the local
z axis coinciding with the classical ground-state spin orienta-
tion. The transformation between the global and local frames
is given by S; = R(6;, ¢;)S!, where R(6;, ¢;) is a rotation
matrix. In the local frame, we can expand the quantum spin
operators using the linearized Holstein-Primakoff transforma-
tionas S} = (m# «/ﬁ% S — a}a,-), where a} and a;
are bosonic ladder operators. Keeping only terms up to sec-
ond order in the Holstein-Primakoff bosons, the Hamiltonian
can be written as H = Ho + H,, where the H is a constant
corresponding to the classical ground-state energy and H,
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FIG. 3. Spin configuration stabilized by the two models, which assume the MEI and DMI to be limited to the nearest neighbors and
J =D = 1. (a) A cycloidal spin spiral being the ground state of model I. (b) The helical spin spiral stabilized by model II. Both spin spirals
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have the same wave vector Q = <= §. (¢) Skyrmion lattice obtained by adding an out-of-plane magnetic field to model I.
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contains the quadratic terms of the Holstein-Primakoff bosons
describing the spin excitations. The spin-wave eigenvalues
w(k) and eigenvectors |K) are then obtained by a Bogoliubov
transformation, which diagonalizes the system’s dynamical
matrix in the reciprocal space while ensuring the bosonic
character of the diagonalizing basis.

The spin-wave inelastic scattering spectrum is computed
with our theory for SREELS of noncollinear magnets dis-
cussed in Ref. [57]. We employ time-dependent perturbation
theory to describe the interaction between the probing beam
and the magnetic system. We arrive to the total dynamical
structure factor (summing up all the scattering channels),
which is given by

(g, ) oc Yy RN (g, ), )

["AY

where o, 8 = x,y,z and u,v are site indices for spins in
the unit cell that encompasses the noncollinear ground-state
magnetic structure. The spin-spin correlation tensor can be
expressed using the information about the spin-wave modes
as

NP (@ 0) = Y 8[w — w,(0)] (0S4 (—q)lk. r)

k,r
x (k, 71S%(q)]0), A3)

where w, (k) is the energy of the spin-wave mode r with wave
vector k, and matrix elements of the spin operators between
the ground state and the excited spin-wave states [57]. This
contains all the information about the spin waves, their sig-
nature in the scattering spectroscopy, and also explains the
unfolding of the spin-wave modes and the potential extinction
of their signal due to destructive interference.

SREELS can also provide spin-resolved spectroscopy of
the spin waves. In this setup, a spin-polarized beam of elec-
trons is used to probe the magnetic material (this could be
changed to neutrons with little modification). The scattered
electrons are then spin filtered with the spin analyzer collinear
with the incident beam polarization. This gives rise to four
scattering channels, one for each possible combination of
(incoming spin)-(outgoing spin). Two of these channels cor-
respond to non-spin-flip processes, namely, the up-up and the
down-down channels. The other two, up-down and down-up,
account for spin-flip events, where angular momentum is ex-
changed with the sample.

When probing a ferromagnet with all spins along 4z, only
the down-up channel can excite spin waves (assuming the
probing beam polarization to be parallel to the ferromagnetic
magnetization) because this process transfers the exact an-
gular momentum required to excite a quantum of spin wave
(the net angular momentum of the spin wave is —1 in units
of 7). In contrast, a spin spiral hosts three types of spin-
wave modes (also known as “universal helimagnon modes”
[49]). If the beam polarization is aligned perpendicularly to
the plane where the magnetic moments rotate in the ground
state, their net angular momentum can be inferred from the
spin-angular-momentum conservation that defines the four
scattering channels in SREELS [57]. One mode appears in
the up-down channel and another in the down-up channel, so
these are rotational modes with the net angular momentum of

+1 and —1, respectively. The third type of mode appears in the
up-up and down-down channels, and so has zero net angular
momentum. If the beam polarization is not set as explained,
different types of modes can be detected in the same scattering
channel.

III. RESULTS AND DISCUSSIONS

The following summarizes how the Dzyaloshinskii-Moriya
interaction affects the dynamics and energetics of spin waves
in collinear and noncollinear magnetic structures followed by
extended discussions in the next subsections:

(A) Nonreciprocal spin-wave spectrum only occurs, in the
absence of an external magnetic field, for systems of finite
magnetization and when n” - D(k) # 0, i.e., if the projection
of the Fourier-transformed DMI on the magnetization direc-
tion is finite.

(B) The angular momentum of a spin-wave mode can be
regarded as the handedness attribute, which defines the direc-
tion toward which the dispersion of the given mode shifts out
of the I' point due to the DMI.

(C) Systems of zero net magnetization can host spin-wave
modes individually nonreciprocal induced by the DMI, while
the total spin-wave spectrum remains reciprocal. An external
magnetic field can induce nonreciprocity.

(D) Polarized inelastic scattering experiments can be used
to unveil the DMI-induced nonreciprocity, and thus allowing
to measure the DMI orientation. A nonreciprocal spectrum
only occurs for spin-flip scattering processes due to spin-wave
modes whose angular momentum aligns with the polarization
of the probing particles and D(k).

(E) All spin textures that are favored by the DMI have non-
reciprocal spin-wave modes with angular momentum aligned
to the component of D(k) that contributes to the DMI energy
gain.

A. Nonreciprocal spin-wave spectrum

In the absence of an external magnetic field, a nonre-
ciprocal spin-wave spectrum (different spin-wave energies
for modes with wave vectors which are equal in length
and opposite in direction) only occurs for systems with fi-
nite magnetization. Such a nonreciprocity manifests in the
reciprocal-space directions along which a component of D(k)
aligns with the net magnetization.

The first statement is related to the breaking of time-
reversal symmetry. Consider a system described by the
Hamiltonian H. If a system is invariant under time-reversal
operator ®, then ®H (k)®~! = H(—K), and the reciprocity
of the system is guaranteed. Systems of zero net magnetiza-
tion, such as antiferromagnets and some spin spirals [e.g., see
Figs. 3(a) and 3(b)], are not invariant under time reversal, nor
under partial translation 7, (translation by half of the spin
spiral wavelength A along the spiral propagation direction),
individually. However, they are invariant under a combined
operation of time reversal plus partial translation S = ©7 2,
which leads to S H (k)S, ! = H(—K) [59]. When the system
has a finite net magnetization, it is not possible to find such a
combined operation that leaves the Hamiltonian invariant.
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FIG. 4. Instantaneous snapshot of the spin wave of a ferromagnet for a given wave vector Kk as given by Eq. (4). The chirality is defined as
the sense in which the spin moments rotation as we proceed along the propagation direction given by k. (a) For ¢ = +1, the spin wave has a
right-handed chirality. (b) For ¢ = —1, it has a left-handed chirality. The magnetization direction is given by n°. During the precession due to
the spin wave, all spins deviate from n° by a fixed angle 6. The phase of precession of the ith spin is given by ¢; = k - R;, where R; is the spin

position, and it is used to color code the spins.

We can prove the second statement, following Ref. [24],
considering an instantaneous snapshot of a classical spin wave
in a ferromagnet, given by

S; = cos ¢; siné n' + ¢ sin ¢;sinf n? +cos6n’, (4)

where ny is a unit vector along the magnetization, which forms
an orthonormal basis together with n' and n® (see Fig. 4).
0 corresponds to a small deviation from the magnetization
direction n°, while ¢; = k - R; corresponds to a transversal
rotation of the spin moments with rotational sense (chirality)
given by ¢ = £1. At this stage, ¢ represents a hypothetical
chiral degree of freedom, which we will show later to be
fixed by the equations of motion. Placing this expression into
Eq. (1), we obtain that the only chirality-dependent term is
given by

E(K, c) x cn’-D(K), (3)

where D(k) is the lattice Fourier transform of the
Dzyaloshinskii-Moriya vectors. For details on how to obtain
the above equation, see the Appendix, Sec. 1.

In both models, the ferromagnetic state can be stabilized
by an external magnetic field, but the chiral asymmetry will
only manifest when the magnetization has a finite in-plane
projection. For model I, the Fourier transformation of the
DMI interaction gives D(k) = 2D[— sin(ak”) X + sin(ak*) §]
and, therefore, the asymmetry is strongest for spin waves
propagating perpendicularly to the magnetization, and mostly
vanishes when parallel to it [see Fig. 5(a)]. For model II,
however, D(k) = 2D[sin(ak™) X + sin(ak”) §] and the asym-
metry is strongest mostly for wave vectors parallel to the
magnetization [see Fig. 5(b)].

B. Spin-wave angular momentum and spin-wave handedness

Now we need to establish an important relation between
spin-wave chirality, handedness, and angular momentum. In
the previous section, our ansatz of spin waves considers two
possible spin-wave chiralities for a ferromagnet. In the fol-
lowing, we demonstrate that only one of them is a solution
to the coupled equation of motions that govern the dynamics.
Aside from that, we define a spin-wave handedness, which is a
chiral invariant for the spin waves whose sign is related to the
direction of the spin-wave dispersion shift in the reciprocal
space. Lastly, we show that there is a one-to-one relation

between the spin-wave handedness and the angular momen-
tum. That relation is fundamental in providing an easy and
comprehensive way to predict chiral asymmetry in spin-wave
dynamics induced by DMI.

Thus far, we know that the spin-wave dispersion curve
of a ferromagnet can be shifted out of the I" point due to
the influence of the Dzyaloshinskii-Moriya interactions. This
shift was measured in the electron scattering experiments of
Zakeri et al. [33], and it occurs toward a very well-defined
direction for a fixed direction of the magnetization (given that
the DMI is a constant of the material). From this fact, we can
infer that spin waves in a ferromagnet have a given handed-
ness that defines how the spin-wave energies respond to the
DML, for example, setting the direction of the dispersion shift.
Can a ferromagnet of fixed magnetization host spin waves
of opposite handednesses, such that their dispersion curves
would shift to the opposite directions? A hint comes from the
fact that spin waves in a ferromagnetic system always possess
angular momenta along the same direction (antiparallel to the
magnetization).'

With the previous question in mind, we will review the
motion of the spin moments of a ferromagnet when hosting a
spin wave. We consider classical spin moments represented by
vectors and the phenomenological Landau-Lifshitz equation
describing the time evolution of every spin moment:

di;t(t) = —ySi(t) x B{"(1), ©

where y is the gyromagnetic ratio. The effective field is given
by

oH
Bi'() = —2 =) (yS; +8; xDy) +Bi, (1)
! j

where we considered the Hamiltonian of Eq. (1). We have one
equation of motion for each magnetic atom of our material,
and these equations are coupled because the effective field in
each site depends on the dynamics of the neighboring site to
which they couple to via the magnetic interactions.

'The magnetization, which is the volumetric density of magnetic
moment, is antiparallel to spin angular momentum because of the
negative electric charge of the electrons. In the literature, however,
often the minus sign is disregarded, which is the convention we
follow in this paper.
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FIG. 5. Chirality-dependent spin-wave energy landscape throughout the Brillouin zone, obtained from Eq. (5). The (a) row corresponds to
the energy landscape for model I and row (b) for model II. Each column corresponds to a different in-plane magnetization direction, which is

represented by the black arrows.

The presence of the DMI can cause instability in the ferro-
magnetic phase in favor of the spin-spiral structure. To avoid
this problem, we apply a sufficiently large external magnetic
field along the z direction. We assume that the spin precession
is of small amplitude around its equilibrium direction. The
solution steps for the linearized problem are collected in the
Appendix, Sec. 1. The time evolution of the spin at site i reads
as

1
Si(k, 1) = ﬁ[cos(—k R; + wpt) &

+ sin(—k - R; + i) §] + S 2, ®)

which corresponds to a spin wave of wave vector k. Its fre-
quency wy is given by

ox=SUo—J))+B with Jx =) Aj;;cos(k - Rj+¢i)),

1

©))

where A;; = /(D};)? —l—in and ¢;; = arctan (Dj;/J;;). We
have that wx > 0 and thus every spin has a counterclockwise
precession around the magnetization. In the ferromagnetic
ground state, all the spins are aligned, and so the total angular
momentum of the system is maximal along Z (the magnetiza-
tion direction). With a spin wave, as the spins are precessing,
the total angular momentum is reduced, which means that the
spin-wave angular momentum is antiparallel to Z.

The DMI favors certain cantings between spin moments.
Let us then define a spin-wave spatial chirality based on the
canting between adjacent spins as the sign of their cross prod-
uct projected onto the magnetization direction, and integrated
over a full revolution of the precessional motion:

cp(k) = sgn(/r Z-[Si(k, 1) x Sa(k, t)]dt)
0

= —sgn [sin(ak - £12)], (10)

where a is the lattice constant and £, is a unit vector along
the bond from site 1 to 2,2 and t = 27 /wx is the precession
period. This equation tells us that the chirality changes peri-
odically as a function of k, and it is zero for k - 1, = nw /a
and particular for k L rj. Let us take two wave vectors
close to the I" point, one parallel and another antiparallel to
12, snapshots of the correspondent spin waves are shown in
Figs. 6(a) and 6(b), respectively. As the DMI favors one of the
two chiralities, one of the spin-wave energies is lowered while
the other is raised, effectively shifting the energy minimum
of the spin-wave dispersion curve out of the I point in the
direction of k that provides the favorable chirality. This shift
is what appears as the phase ¢ in Eq. (9).

Next, let us define a more general chirality invariant that
does not vary with the wave vector, which we will call the
spin-wave handedness:

ci2(k)

2=—"7" o
sgn(k - £1»)

an
which is associated with the temporal chirality of a spin wave
and has origin in the chirality of the LLG equation itself. Thus,
the spin-wave handedness couples to the spin precession sense
and to the spin-wave angular momentum. For the spin-wave
solution given by Eq. (8), we get C;, = —1. The direction
toward which the spin-wave dispersion shifts couples to the
spin-wave handedness. If the handedness were to be +1, in-
stead, the shift would have been in the opposite direction. That
is the case if the spin wave were to be given by

1
Si(k, 1) = —=[ cos(—k - R; + wxt)R

JN

— sin(—k - R; + axt)§] — Sz, 12

Naturally, this definition depends on the choice of the spin pair.
It is important to choose a pair such that D*(k) does not vanish for
K || £12.
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FIG. 6. Spin-wave chirality. In our ansatz, ¢ is a constant of motion, therefore, we represent here only the transversal components S* and
$¥ which change over time. The open circles indicate the precession sense which is fixed by the equation of motion. The precession phase is
given by k - R;. With a spin wave, the system has two inequivalent configurations: (a) one if the wave vector is parallel to £, yielding ¢;, = —1
(moving from the left to the right, the tilt direction is given by left-hand thumb rule); (b) another if the wave vector is antiparallel to £, which

results in ¢, = +1 (the tilt direction is given by right-hand thumb rule).

which corresponds to a clockwise rotation and an angular mo-
mentum parallel to Z. Then, we would have Ci, = +1. Thus,
a change of handedness comes together with an inversion of
the angular momentum, and the dispersion shift due to DMI
will occur in the opposite direction of that for spin waves with
handedness C;; = —1. By the way, this second solution corre-
sponds in fact to the spin waves for a ferromagnet with the
magnetization along —2. This momentum-handedness cou-
pling is imposed by the equation of motion that accepts only
wavelike solutions.

As we will demonstrate in the following, this linking
between angular momentum and handedness also holds for
noncollinear magnetic systems, where the spatial chirality can
be rather difficult to track. Nevertheless, often these systems
have excitations of very well-defined angular momentum,
which will then allow us to infer their handedness and thus
their response to the DMI. This result is very powerful in
allowing us to predict the effect of the DMI on the spin-wave
energy and vice versa, as we demonstrate next.

C. External magnetic field and zero-net-magnetization systems

Previously, we argued that only systems with finite net
magnetization can produce a nonreciprocal spin-wave spec-
trum due to DMI. Something analogous to that also happens
for systems of zero net magnetization: the Dzyaloshinskii-
Moriya interaction can induce chiral asymmetries in those
systems too. However, it can now only break the chirality
degeneracy between rotational spin-wave modes but leaving
the total spectrum reciprocally symmetric in the absence of an
external magnetic field.

Let us then consider an antiferromagnet, and that the D(k)
aligns with the axis of the magnetic moments of the sys-
tems. We can regard the antiferromagnet as a superposition
of two coupled ferromagnetic sublattices of opposite mag-
netization. Such a system has two spin-wave modes, each
one with angular momentum aligned to one of the sub-
lattice magnetizations. In ferromagnets, flipping the entire
magnetization makes the DMI-induced asymmetry to reverse
in the reciprocal space [33]. Thus, the antiferromagnet spin
waves of opposite angular momenta are shifted in opposite
directions, which effectively leaves the total spectrum of the

system reciprocal. The system becomes nonreciprocal once
again under the action of an external magnetic field parallel
to the alignment axis of the magnetic moments [47,56,60].
And here we have the first mean though which one can re-
veal the asymmetry induced by DMI in systems of zero net
magnetization.

D. Role of spin-polarized and -resolved inelastic scattering

Now, we know that DMI can induce hidden chiral asym-
metry in the spin-wave spectrum in a system of zero net
magnetization and that an external magnetic field can be used
to reveal it. We proceed by demonstrating that in the ab-
sence of an external magnetic field, we still can identify these
asymmetries utilizing spin-polarized and -resolved scattering
experiments.

Often, zero-magnetization systems, such as spin spirals
and antiferromagnets, host spin-wave modes that come in
pairs, where the counterpartner has opposite angular momen-
tum, and therefore, opposite handedness, e.g., two rotational
modes of opposite angular momentum. In the absence of
DMLI, these modes are degenerate and reciprocally symmetric,
which would be the case of the two modes in an antifer-
romagnet. But, as we have seen in the previous subsection,
this degeneracy can be lifted by the DMI, leaving each mode
nonreciprocal while the total spectrum remains reciprocal.
As we have also seen, an external magnetic field couples
differently to each mode, energetically favoring one and dis-
favoring the other, which generates an overall nonreciprocal
spectrum [56].

An alternative way to couple with the angular momen-
tum of the spin waves is utilizing spin-resolved scattering
experiments, such as SREELS [57]. In the example of an
antiferromagnet, this would allow us to measure each mode
separately by aligning the polarization of the probing parti-
cles to the precession axis of one of the spin-wave modes
and measuring only the spin-flip channel. Similarly, the
same perfect mode selection can be achieved for spin-spiral
systems [57]. This makes of spin-polarized or -resolved in-
elastic scattering a second means through which one can
reveal the DMI-induced nonreciprocity on the spin-wave
spectrum.
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FIG. 7. Spin-resolved inelastic scattering spectra for the spin spiral generated from model I. (a) Shows the two spin-flip channels for
polarization along X, as indicated by the horizontal arrows. Nonreciprocity occurs in the reciprocal space where a component of D(k),
polarization, and angular momentum align with each other. For model I on path Y-I'-Y, D(k) and the angular momentum of the spin-wave
modes with minima at k = +Q are parallel to X. (b) Shows the case for the polarization along §, indicated by the vertical arrows. Thus,
nonreciprocity is only seen in the X-I"-X, when D(K) || § that couples to the angular momentum of those spin waves.

Next, we conjecture the conditions that rule the occurrence
or not of nonreciprocal spin-wave spectra in inelastic scatter-
ing experiments:

(i) Nonreciprocal spectrum only occurs for spin-wave
modes of finite angular momentum. This is a generalization
of the requirement that a system needs a finite magnetization
to feature a total nonreciprocal spin-wave spectrum induced
by DMI in subsection A. However, this general rule applies
to zero-net-magnetization systems. As we have seen, angular
momentum translates into the chiral handedness of the spin
wave. Without angular momentum, a spin wave is nonchiral
and cannot manifest nonreciprocity due to DML

(i) Only spin-flip channels may present a nonreciprocal
spectrum. This is a direct consequence of (i). If only modes
of finite angular momenta can be nonreciprocal, and usu-
ally these modes are paired to modes of opposite angular
momenta, only in a spin-flip channel we can measure one
disregarding the other.

(iii) Only the component D(k) parallel to the spin-wave
angular momentum can influence its nonreciprocal spectrum.

(iv) Only a scattering experiment with the polariza-
tion of the probing particles aligned along the spin-wave
angular momentum can reveal the nonreciprocity of this
mode.

Next, we demonstrate and exemplify items (iii) and (iv) by
calculating the spin-resolved spectra for the spin spirals that
result from models I and 1II, introduced in Sec. II, with Q ||
¥, shown respectively in Figs. 7 and 8. Model I stabilizes a
cycloidal spiral whose spins lay in the y-z plane [see Fig. 3(a)],
while model II leads to a helical spiral with spins lying in the
x-z plane [see Fig. 3(b)].

Figure 7(a) shows the spin-flip channels for polarization
along X (represented by horizontal arrows), which present a
nonreciprocal spectrum in the Y-I"-Y path, i.e., in a reciprocal-
space direction perpendicular to the polarization. For model
I, D(k) = —2D sin(ak”)X on this path and, therefore, it is
parallel to the polarization and to the angular momentum of
the spin-wave modes whose energy minima are at k = +Q.
For Fig. 7(b), the polarization is set along § (represented
by vertical arrows), and nonreciprocity is only seen for the
X-I'-X path, again because on this path D(k) = 2D sin(ak*)y
is parallel to the polarization and the angular momentum of
some spin-wave modes. Naturally, a polarization along z will
not feature any nonreciprocity because the DMI model has no
component along that direction.

For model II, the Fourier-transformed DMI vector on
path Y-I'-Y is D(k) = 2D sin(ak”)y, and along X-I"-X it is
D(k) = 2D sin(ak*)X. Thus, in contrast to model I, we will
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FIG. 8. Spin-resolved inelastic scattering spectra for the spin spiral generated from model II. (a) Shows the two spin-flip channels for
polarization along X, as indicated by the horizontal arrows. Nonreciprocity occurs in the reciprocal space where a component of D(k),
polarization, and angular momentum align with each other. For model II on path X-I"-X, D(k) and the angular momentum of some spin-wave
modes are parallel to X. (b) Shows the case for the polarization along §, indicated by the vertical arrows. Thus, nonreciprocity is only seen in
the Y-I'-Y, when D(Kk) || § that couples to the angular momentum of the spin-wave modes whose energy minima are at k = £Q.

observe the nonreciprocity on the reciprocal-space direction
parallel to the polarization [see Figs. 8(a) and 8(b)], where the
polarization is along X and ¥, respectively. In both models, the
spin-spiral wave vector points along the same direction, but
the direction where the nonreciprocity occurs changes from
one model to the other, which shows that the direction of the
spiral wave vector has no role on the nonreciprocity.

For more complex systems with lower symmetries, such
as skyrmion lattices, the spectrum of each spin-wave mode is
not well defined throughout the reciprocal space in inelastic
scattering experiments. The spectra are closer to a contin-
uum of excitations instead of the well-separated branches
seen for the spin-spiral configurations (see Fig. 9), where-
upon adding an out-of-plane external magnetic field to model
I could stabilize a skyrmion lattice in an 8 x 8 atoms unit
cell [see also Fig. 3(c)]. Naturally, it is also hard to identify
the direction of the angular momentum of the underlying
spin wave corresponding to each high-intensity region of the
spectrum. Nevertheless, the nonreciprocity is still present and
measurable. In Fig. 9, we observe a nonreciprocity on the
same path, Y-I"-Y, as seen for the spin spiral established in
the absence of the external magnetic field [see Fig. 7(a)], for
the same polarization along X. Even though the two systems
look rather different from each other, the reciprocity on their

spectra occurs under the same condition because they share
the same DMI structure.

As we have demonstrated, only spin-flip channels can
present a nonreciprocal spectrum. However, not always a
spin-resolved inelastic scattering experiment is available, as
is currently the case of electron scattering setup to study
spin waves. A more easily accessible experiment is the spin-
polarized setup, where a source of spin-polarized particles is
used to scatter from the magnetic material and the spin of the
scattered particle is not measured. The resulting spectrum is
equivalent to the addition of a spin-flip and a non-spin-slip
channel, e.g., down-up plus down-down. While the latter can-
not be nonreciprocal, the first can and so is their sum.

Figure 10 represents constant wave-vector spectra, which
are the typical measurements done in inelastic electron and
neutron scattering experiments. The wave vector of the spin
excitations is fixed by controlling the ratio between the in-
cident and scattering angles, and the intensity corresponds
to the number of probing particles that have transferred a
given amount of energy to the excitations in an interval of
time. We calculated the spectra for wave vectors opposite
to each other in the reciprocal space k = +27k¥, and the
polarization was set along the X direction, which aligns with
D(k). Figure 10(a) shows the results for a spin-resolved setup
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FIG. 9. Spin-resolved inelastic scattering spectra for a skyrmion lattice generated by model I added with an out-of-plane external
magnetic field. (a) Represents the left-right spin-flip channel, and (b) shows the right-left one, as indicated by the horizontal arrows. The
beam polarization is along X. The spectra resemble a continuum of excitations rather than well-defined dispersing lines. Nevertheless, the
nonreciprocity is visible (along the Y-I"-Y path for this beam polarization), and their occurrence conditions match those for the spin spiral
established by the same DMI model in the absence of the external field [see also Fig. 7(a)].

[which corresponds to a vertical line of the spectrum shown
in Fig. 9(a)], while Fig. 10(b) presents the spin-polarized
spectrum. In the low-energy region, we clearly observe for
both setups, spin resolved or spin polarized, a difference in the
scattering intensity. For higher energies, some peaks vanish
and others appear when comparing the spectra for the two
opposite wave vectors.

It is the DMI directional sense that determines which
scattering intensity will be higher, at +k or —k. Upon re-
versing the DMI, the spectra would be swapped in Fig. 10.
This implies that such an experiment measures the DMI
sense.

Let us take model I with an out-of-plane magnetic field
which stabilized a skyrmion lattice, and now reverse the chi-
rality of the DMI along one direction only, making D* —
—D*. This modified model then stabilizes an antiskyrmion

lattice. Because the skyrmion and antiskyrmion systems trans-
late into the other only by a mirror reflection operation, their
total spin-wave spectra, which are reciprocal, do not differ.
However, as we have shown, the scattering rate can depend
directly on the DMI orientation, and we should be able in this
case to identify it.

E. Dzyaloshinskii-Moriya interaction and spin-wave
angular momentum

We saw that the nonreciprocity is seen when the probing-
beam polarization, the DMI vector in reciprocal space D(k),
and the spin wave’s angular momentum align. It is easy to see
that the polarization couples to the angular momentum, how-
ever, how does the angular momentum couple to the DMI?
Is the angular momentum, which is the property that allows

90 — . — . ' ' . . . .

(a) k=+0.125 —— (b) k=+0.125 ——
75 | k=-0.125 — | | k=-0.125 —— |
60 spin-resolved setup spin-polarized setup
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FIG. 10. Constant-wave-vector inelastic scattering spectra for a skyrmion lattice generated by model I added with an out-of-plane external
magnetic field. The spectra were calculated for two opposite wave vectors k = :i:%”k §. The beam polarization is along X. (a) Shows the
spin-resolved setup, where only one spin-flip channel is taken (left-right scattering channel). (b) Presents the spin-polarized setup, which
results from adding a spin flip and a non-spin flip (left-right + left-left scattering channels). In both cases, we can observe that the inelastic
signal at —k is distinct and predominantly higher than at k, therefore, it is nonreciprocal. The multiple peaks correspond to the various
spin-wave modes of the skyrmion lattice, in contrast to the expected single peak for a ferromagnetic phase and the three modes of a spin spiral.
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FIG. 11. Spin-resolved inelastic scattering spectra for the spin spiral generated by model I with D¥ = 0. Note that the spiral itself is
stabilized by D,. The polarization is set along ¥, as indicated by the vertical arrows. The two spin-flip channels are degenerate and reciprocal
because D(k) has no component along the polarization to induce angular momentum of the spin-wave modes along that direction. Restoring
the D” of the original model I, a nonreciprocity occurs on the X-I"-X while the ground-state spin configuration is not affected, proving that the

DMI can directly induce the nonreciprocity of spin waves.

the nonreciprocal inelastic measurement, given by the spin
structure or by the Dzyaloshinskii-Moriya interactions? The
answer is that both spin configuration and the DMI set the
angular momentum of the spin waves.

Let us consider model I with D¥ set to zero. The same
cycloidal spin spiral with Q || § is still the ground state.
Previously, we have seen on Fig. 7(b) that spin-resolved in-
elastic scattering spectra for polarization along § featured
nonreciprocity in the X-I'-X path because there D(k) was
parallel to §. Now, once D(k) = 0 on that same path, the
spectrum becomes reciprocal (see Fig. 11). This proves that
the nonreciprocity is not only induced by the spin structure but
also directly by the DMI. Similarly, one observes that a spin
spiral stabilized by exchange interaction frustration, without
involving DMI, can also feature nonreciprocity as if the DMI
that could favor that structure were there [32].

We have seen that the DMI only influences the dispersion
and the inelastic spectra of spin-wave modes whose angular
momenta have a finite projection on D(k). An antiferromagnet
hosts two counter-rotating spin-wave modes that precess in
the plane perpendicular to the axis of the magnetic moments.
That is why we discussed in item (iii) an example where D(k)
is parallel to this axis, which guarantees that the DMI would
maximally influence the spin-wave modes. However, for a
general noncollinear magnetic structure, the angular momenta
of the spin waves are not obvious and, thus, only knowing the
DMI structure will not be enough to predict the occurrence
of the asymmetries. Our observations have shown, however,
that spin structures that are energetically favored by a given
component of D(k) will host spin waves whose angular mo-
menta are along this same DMI component, i.e., they will
also induce nonreciprocity to the system. We can exemplify
this by taking the models I and II again, and the spin spirals
that each one favors as the ground state. For model I, the
cycloidal spiral with spins lying in the yz plane is stabilized
by D*, and so the angular momenta of the +Q and —Q
modes are along X. Meanwhile, the helical spiral of model II

is stabilized by D”, and its £Q modes have angular momenta
along §.

IV. CONCLUSIONS

In this paper, we contributed to the problem of mapping
the Dzyaloshinskii-Moriya interaction in systems of complex
magnetic structures. We did that by studying the effect of
the DMI on the dynamics of spin waves using atomistic spin
models. We made an important connection between the an-
gular momentum and the chiral handedness of a spin-wave
mode. Effectively, this allows us to predict when a given
spin-wave mode energy and scattering rate is affected by
the DML

We saw that the DMI can induce nonreciprocity in the spin
waves. We concluded that only systems of finite magnetiza-
tion can have a total spin-wave spectrum that is nonreciprocal.
Nevertheless, nonreciprocity can also occur for individual
spin-wave modes in systems with zero-net-magnetization and
noncollinear spin textures, while the total spectrum remains
reciprocal.

We showed that an external magnetic field and spin-
resolved energy-loss spectroscopy (SREELS), proposed in
Ref. [57], can help to reveal the nonreciprocity of individual
modes. We saw that only a spin-flip scattering spectrum can
present nonreciprocity and that a nonreciprocal spectrum is
expected when a component of D(K) is parallel to the angular
momentum and the polarization of the probing electrons. As
we can control the polarization of the probe beam, and the
spin-resolved measurements can also determine the angular
momentum of the spin waves, ultimately we can determine the
DMI chirality even for zero-net-magnetization systems. This
achievement is in contrast to previous expectations found on
the literature [61], where other authors resorted to controlling
the phase and amplitude of the probing beam to be able to de-
termine the DMI chirality. Our findings can be generalized for
other spectroscopies, such as inelastic neutron scattering and
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radio-frequency magnetic resonance, where the polarization
of the probing particle/field can be controlled.

For the case of a skyrmion lattice, despite having a finite
out-of-plane net magnetization, no component of the DMI
projects along that net magnetization (which is in plane),
guaranteeing that the total spin-wave spectrum is reciprocal.
Nevertheless, the scattering rate still can have nonreciprocity
induced by the DMI. This allowed us to detect a change in the
chirality of the DMI along different directions, which permits
us, for instance, to infer the existence of antiskyrmions instead
of skyrmions [22].

Finally, we learned that the Dzyaloshinskii-Moriya inter-
action can influence the angular momentum of the spin waves
directly and indirectly. In general, the DMI favors the forma-
tion of spin structures that naturally hosts spin waves whose
precession axis aligns with the DMI. That is, the spin-wave
angular momenta tend to be along D(k) that favored the
spin configuration in the first place. However, even those
components of D(k) that do not contribute to the energy of
the ground state can directly influence the dynamics of spin
waves, in particular of their angular momentum and thus their
scattering rate.
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APPENDIX: ON THE CHIRAL ASYMMETRY OF
SPIN WAVES

1. Spin-wave chirality in ferromagnets

The only contribution in the Hamiltonian that can be sen-
sitive to the chirality of a spin wave (see Sec. III A) is that of
the Dzyaloshinskii-Moriya interaction. It goes with the cross
product of two spin moments at different sites. If we consider
the ansatz for a spin-wave snapshot given by Eq. (4), we get

S8 = [(5759 - SPs3n’ + (575} — /s’
102 _ @2¢l\n0
+ (8187 = 87s)n’]
= [c sin6 cosf(sin ¢; — sinp;)n'
+ cos 6 siné(cos ¢; — cos ¢;)n’
+c sin® 0 sin[k - (R; — R;)In’] (A1)

and, therefore, two terms depend on the chirality constant c.
However, evaluating the sum over all lattice points required
by the Hamiltonian (1), the first term vanishes:

ZD}j(sin ¢i —sing;) =2D);sing; =0  (A2)
ij

1 _ _pl
because D;; = —D ;.

Thus, the only term that depends on the spin-wave chirality
in the energy, obtained by substituting the spin-wave equation
of Eq. (4) into the Hamiltonian in Eq. (1), has the form

1
EKk, c) = —5¢ sin® 6 Z sin[k - (R; — R;)]D;; - n°
i

_ _l -2 0
= 2c sin“ONn" - D(k), (A3)

where

D(k) = sin(k - R;))D;;. (Ad)
j

We can notice that only the D(k) component along the mag-
netization contributes to the chirality. This result matches the
conclusion of Udvardi and Szunyogh [24].

2. Spin waves in a classical approach

In this section, we solve the equation of motion for every
spin in a ferromagnet to understand the dynamics of its spin
waves and the corresponding local spin precession.

a. Effective field

Considering the magnetic moments of a ferromagnet as
classical vectors, their dynamics are governed by the phe-
nomenological equation of motion given by Eq. (6). Solving
this equation simultaneously for all sites provides spin-wave
solutions. First, we need to determine the effective field, given
by Eq. (7), which for the Hamiltonian of Eq. (1) reads as

;ff _ _aH

_ o A
TS (A9

> UyS; +8; x Dyj) +B.
J

In calculating the derivative of the Hamiltonian, we did not
have to take care of terms with k = j = i because J;; and D;;
are zero. Also, we made use of the cyclic permutation of the
scalar triple product: a- (b xc¢)=c-(axb)=b-(cxa);
and we swapped the interaction parameters index respecting
their symmetries: J;; = J;; and D;; = —D;.

b. Equation of motion
Thus, the equation of motion in Eq. (6) reads as
‘;—Sl" = —Z [7:(S)S5 — $58%) + S3(Si - Dyj) — D(S; - S))]%
J
—(S'B* = SiB)X — > [Jij(SiS — 875%)
J
+S87(S;i - Dyj) — D};(S; - S)H]y — (SiB* — SIBY)y

=Y [ Ji5(S7S% — SESY) + S(S; - Dyj) — D (S; - )]z
J

—(SfB” — §'B")i. (A6)
Let us assume a magnetic field of magnitude B along the
z direction and that the motion of each spin is of a small
amplitude around the equilibrium axis. This implies that we
consider that S, S < 1, and in first-order approximation we

disregard all products between them and take S ~ S. Thus,
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the above equation becomes

=

ds; ) x N
@ S;[Jij(sf—s} +D5;S3] + BS | %

- SZ (S = 8) + D87 — BS! |3, (A7)

because ) j Df]‘ = 0 when the summation is over a Bravais
lattice due to the antisymmetry of the DMI. We can see that,
within the linear approximation, only the component of DMI
along the magnetization matters.

This is a vectorial equation, which represents two equa-
tions: one for the x and one for the y components of the spin
moment. Here note that the dynamics of one of the compo-
nents depends on that of the other, therefore, we have a set
of two coupled equations. Then, let us consider the following
transformation:

S} =S +iS) and S =7 —is),

1 1
S =57 48 and 8= (8" —5)). (A8
l

which define the circular components of the spin moments,
and the following definition

Jl.f = Jij £ iDj;. (A9)
Applying these to Eq. (A7), we find
ASE S UiSE — JEST1+ BSE, (A10)
+! dr - ijej
J

defining two decoupled equations of motion.

¢. Fourier transformation

The dynamics of a given site depends on what is happening
to all sites connected to it via the exchange interaction. How-
ever, if the system has translational symmetry, we can Fourier
transform these equations defining

1 .
T e i

Then, by left multiplying Eq. (A10) with ﬁ > e *Ri one
gets

1 KR,
= ﬁZe’kR’Sﬁ (A11)
K

dSg(1)
j—k
+ dt

where the Fourier-transformed interactions are defined as
+ ik-R;; 7+
Jo = E ez T

i

which assumes a translational symmetry, such that J;; * only
depends on the difference R;; = R; —R;. Note as well
that J(T =y.(Ui£ 1DZ Y= ,Jij= Jo, again because of the
DMI antisymmetry. Next follows some useful properties of
the interactions in the reciprocal space:

+ _ —ikR;; j+ _ kR 1F _ IF
Jo = E e fJij = E e /in =Jy
i i

= (SUo — JF) + B)SE (), (A12)

(A13)

(Al14)
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FIG. 12. Spin-wave dispersion for a ferromagnet with DMI. The
red and blue curves correspond to the functions w, and o, from
Eq. (A18), respectively. The blue curve is obtained from the red one
by time reversal, which enforces w; = —w~,. Parameters: J = 1,
D*=0.5,B=0.3.

and

JE =" (cos(k - Ryj) +i sin(k - Ri))(Jij & iD5;)

i

= ZAU COS(k . Rl] :l:ezj)a

where 6;; = arctan(D;;/J;;) and A;; = | [(D};)* + (Jij)*. The

last equation shows that Jlf is purely real and that it can be
expanded in terms of cosine functions whose phase is given by
the magnetic exchange and DMI ratio. This derives from the
fact that the sum of a Bravais lattice of an antisymmetric func-
tion vanishes, ), sin(k - R;;)J;; = >, cos(k - R;;))Dj; =0

(A15)

d. Eigenvalues: The frequencies

The differential equations in (A12) have solutions of the
type

SE(t) = SFeient, (A16)
which plugging into Eq. (A12) results in
FoiSE = (SUo — J7) + B)SE (A17)

and, therefore, the eigenvalues of these equations that corre-
spond to the solution frequencies are given by

o = F(SUp — JF) + B). (A18)

For a one-dimensional ferromagnet with nearest-neighbor-
only MEI and DMI, J =1, D* = 0.5, and a magnetic field
B = 0.3, we plotted the above equation in Fig. 12.

Using Eq. (A14), we can notice that

%, = FISUo — ) + Bl = -0y, (A19)

that is, the frequency of each solution is related to the other
by an inversion of wave vector and a sign change of the
frequency, which can be translated into an inversion of time
in Eq. (A16) (see Fig. 12). Due to J& = Jy, we have that
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a)lf — FB when k — 0. Similarly, Eq. (A17) can be used to
show that the eigenvectors satisfy S, = (S7)*.

In the absence of DMI, and if J;; > 0, we have that
wlf = a)fk = twg, which imply that the frequencies are
reciprocally symmetric and additive inverse of each other.
Furthermore, wy is always real and positive, as we expect for

a ferromagnetic system:

o =8 [1 —cos(k - Ri))lJi; + B > 0.

1

(A20)

For nonzero ij, the phases of the cosines change, making
the spin-wave dispersion nonreciprocal.

e. Local spin dynamics

Now, it is time to transform back, from the circular com-
ponents to the Cartesian ones in order to understand the
precession of individual spins. For a given wave vector k and
using Eq. (A16) (for our purposes we can set S]f = 1 without
loss of generality), we have that

1. 1
ﬁe"‘"‘fs;‘(t) = ﬁ[cos(k ‘R — oft)
+i sin(k - R; — opt)].

SE(k, 1) =

(A21)

Comparing these equations with their definitions at Eq. (AS8)
in terms of the Cartesian components S = S¥ 4 iS}, we geta
solution for each equation:

Sf(k,t)) 1 (cos(k~Ri—wljt)>

+ _
) — <S;V(k, 1) sin(k - R; — /1)

~ N

St Si(k, 1) 1 cos(k-R; — o 1)
0= (Sif(k,r)) ~UN (— sink - R; —wm)'
(A22)

We can show that these two equations are equivalent by using
the relation derived in Eq. (A19). Doing so, we can rewrite the
second solution in Eq. (A22) to get

Sr(—k, 1)\ _ 1 [cos(k-R; —wjt)
S/(—k.0)) = /N \sink - R, — 1) )’

which is equivalent to the first solution in Eq. (A22) but with
opposite wave vector. These solutions represent counterclock-
wise circular precessions.

(A23)

3. Circular components duality

The following reviews the duality between the circular
components of the spin moments and how they evolve through
the transformation considered previously, such as the Fourier
transformation.

From the definition of the circular components in Eq. (A8),
we have that

(SF)* = S7F, (A24)
that is, one is the complex conjugate of the other. Given the
Fourier transformation definitions by Eq. (A11), the complex-
conjugate duality of the Fourier counterparts is given by

(S =57, (A25)
Given the definition of the time evolution, Eq. (A16), we have
that
(S () = ST, (—1). (A26)
And again, we see that they are related by a time-reversal
operation.
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