001     888602
005     20220930130259.0
024 7 _ |a 10.1104/pp.20.00488
|2 doi
024 7 _ |a 0032-0889
|2 ISSN
024 7 _ |a 1532-2548
|2 ISSN
024 7 _ |a 2128/26521
|2 Handle
024 7 _ |a altmetric:89516018
|2 altmetric
024 7 _ |a 32887733
|2 pmid
024 7 _ |a WOS:000585840800006
|2 WOS
037 _ _ |a FZJ-2020-05058
041 _ _ |a English
082 _ _ |a 580
100 1 _ |a van Dusschoten, Dagmar
|0 P:(DE-Juel1)129425
|b 0
|e Corresponding author
245 _ _ |a Spatially Resolved Root Water Uptake Determination Using a Precise Soil Water Sensor
260 _ _ |a Rockville, Md.
|c 2020
|b Soc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1607953444_18333
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a To answer long-standing questions about how plants use and regulate water, an affordable, noninvasive way to determine localroot water uptake (RWU) is required. Here, we present a sensor, the soil water profiler (SWaP), which can determine local soilwater content (u) with a precision of 6.10 25 cm 3 $ cm 23 , an accuracy of 0.002 cm 3 $ cm 23 , a temporal resolution of 24 min, and aone-dimensional spatial resolution of 1 cm. The sensor comprises two copper sheets, integrated into a sleeve and connected to acoil, which form a resonant circuit. A vector network analyzer, inductively coupled to the resonant circuit, measures theresonance frequency, against which u was calibrated. The sensors were integrated into a positioning system, which measuresu along the depth of cylindrical tubes. When combined with modulating light (4-h period) and resultant modulating planttranspiration, the SWaP enables quantification of the component of RWU distribution that varies proportionally with total plantwater uptake, and distinguishes it from soil water redistribution via soil pores and roots. Additionally, as a young, growingmaize (Zea mays) plant progressively tapped its soil environment dry, we observed clear changes in plant-driven RWU and soilwater redistribution profiles. Our SWaP setup can measure the RWU and redistribution of sandy-soil water content withunprecedented precision. The SWaP is therefore a promising device offering new insights into soil–plant hydrology, withapplications for functional root phenotyping in nonsaline, temperature-controlled conditions, at low cost.
536 _ _ |a 582 - Plant Science (POF3-582)
|0 G:(DE-HGF)POF3-582
|c POF3-582
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Kochs, Johannes
|0 P:(DE-Juel1)129346
|b 1
700 1 _ |a Kuppe, Christian W.
|0 P:(DE-Juel1)161296
|b 2
700 1 _ |a Sydoruk, Viktor A.
|0 P:(DE-Juel1)128734
|b 3
700 1 _ |a Couvreur, Valentin
|0 0000-0002-1087-3978
|b 4
700 1 _ |a Pflugfelder, Daniel
|0 P:(DE-Juel1)131784
|b 5
700 1 _ |a Postma, Johannes A.
|0 P:(DE-Juel1)144879
|b 6
773 _ _ |a 10.1104/pp.20.00488
|g Vol. 184, no. 3, p. 1221 - 1235
|0 PERI:(DE-600)2004346-6
|n 3
|p 1221 - 1235
|t Plant physiology
|v 184
|y 2020
|x 1532-2548
856 4 _ |u https://juser.fz-juelich.de/record/888602/files/PP-70744-0.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/888602/files/OpenAccessPDF.pdf
909 C O |o oai:juser.fz-juelich.de:888602
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)129425
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129346
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)161296
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)128734
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)131784
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)144879
913 1 _ |a DE-HGF
|b Key Technologies
|l Key Technologies for the Bioeconomy
|1 G:(DE-HGF)POF3-580
|0 G:(DE-HGF)POF3-582
|2 G:(DE-HGF)POF3-500
|v Plant Science
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-09-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-09-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2020-09-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2020-09-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-09-05
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PLANT PHYSIOL : 2018
|d 2020-09-05
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b PLANT PHYSIOL : 2018
|d 2020-09-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2020-09-05
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-09-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-09-05
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-09-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2020-09-05
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2020-09-05
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-09-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2020-09-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-09-05
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-2-20101118
|k IBG-2
|l Pflanzenwissenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-2-20101118
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21