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To answer long-standing questions about how plants use and regulate water, an affordable, noninvasive way to determine local
root water uptake (RWU) is required. Here, we present a sensor, the soil water profiler (SWaP), which can determine local soil
water content (u) with a precision of 6.1025 cm3 $ cm23, an accuracy of 0.002 cm3 $ cm23, a temporal resolution of 24 min, and a
one-dimensional spatial resolution of 1 cm. The sensor comprises two copper sheets, integrated into a sleeve and connected to a
coil, which form a resonant circuit. A vector network analyzer, inductively coupled to the resonant circuit, measures the
resonance frequency, against which u was calibrated. The sensors were integrated into a positioning system, which measures
u along the depth of cylindrical tubes. When combined with modulating light (4-h period) and resultant modulating plant
transpiration, the SWaP enables quantification of the component of RWU distribution that varies proportionally with total plant
water uptake, and distinguishes it from soil water redistribution via soil pores and roots. Additionally, as a young, growing
maize (Zea mays) plant progressively tapped its soil environment dry, we observed clear changes in plant-driven RWU and soil
water redistribution profiles. Our SWaP setup can measure the RWU and redistribution of sandy-soil water content with
unprecedented precision. The SWaP is therefore a promising device offering new insights into soil–plant hydrology, with
applications for functional root phenotyping in nonsaline, temperature-controlled conditions, at low cost.

Plant water use depends on multiple shoot and root
traits and their interaction with environmental con-
ditions. Aboveground, the most important environ-
mental factors influencing plant water use are light,
vapor-pressure deficit, and temperature (Vadez et al.,
2014). Belowground, the spatial distribution of soil
water content (u), soil hydraulic conductivity (K[u]),
and soil osmotic potential are the most influential en-
vironmental factors for plant water uptake (Chapman
et al., 2012; York et al., 2016). Plant factors determining
water use include leaf area, root system length, root and
shoot architecture, and the associated root, shoot and
stomatal conductance (Caldeira et al., 2014; McAusland

et al., 2016). Under well-watered conditions, most of
the root system is redundant for water uptake. How-
ever, in drying soil, root traits such as length, distri-
bution, diameter, age, level of suberization, expression
levels of active aquaporins, xylem number and diam-
eter, number and presence of root hairs become in-
creasingly important for maintaining transpiration
rates (Chaumont and Tyerman, 2014; Lobet et al., 2014;
Lynch et al., 2014; Carminati et al., 2017; Gleason et al.,
2019) as stomata will close when water supply is lim-
ited (Rodriguez-Dominguez and Brodribb, 2020). In
the field, competition for limited resources makes root
performance evenmore critical for capturing sufficient
water. Studying the abovementioned traits is useful
because they are under genetic control, and consider-
able breeding effort goes into improved survival and
yield of crops under drought (Lynch et al., 2014).
Complementary research focuses on water conserva-
tion management and irrigation strategies, like partial
root zone drying (Sepaskhah and Ahmadi, 2012), to
achieve target yields with minimal water use (Bourzac,
2013). The need for drought-tolerant cultivars and ef-
ficient water use in agriculture is outlined in several
articles (Blum, 2009; Tardieu, 2012; Wasson et al., 2012).
Despite many years of research, there is still consider-
able uncertainty as to what the important plant traits
and combinations thereof are for plant water use. In
part, research is hampered by lack of affordable tech-
nology for measuring spatial and temporal distribution
of root water uptake (RWU), especially in relation to the
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position and activity level of roots relative to available
water (Cooper, 2016). Therefore, a low-cost sensor that is
easy to build and can quantify local u in a very precise
manner would be an important technology for the study
of crop response to drought and/or irrigation strategies.

Methods employed to quantify RWU are indirect, in
that they measure changes of local u or tracer concen-
trations over time. Because both RWU and soil water
flow alter local u or tracer concentration, reliance on
modeling is considerable to dissect these components
and obtain quantitative RWU numbers (Hupet et al.,
2002). Currently, the most direct way to assess local
RWU of parts of the root system is neutron tomography
(NT) using heavy water as a tracer (Zarebanadkouki
et al., 2013; Ahmed et al., 2016). RWU profiles can be
reconstructed in combination with the “hydraulic ar-
chitecture” theoretical framework (Meunier et al., 2017a),
accounting for root conductivities varying even along
each root type (Zarebanadkouki et al., 2016), as observed
experimentally (Meunier et al., 2018). Fluxes in the roots
canbe calculated to an accuracyof;10% (Zarebanadkouki
et al., 2013).Unfortunately,NT is not very accessible, due to
its price and the limited availability of the nuclear equip-
ment needed.

Another approach relies on the measurements of iso-
topic ratios, e.g. 18O and 2H, in the xylem in relation to its
sources in the soil (Zimmermann et al., 1966). Because
heavy water evaporates at lower rates than normal wa-
ter, the ratio of heavy to normal water varies with depth,
which can then be used to quantify RWU (Rothfuss and
Javaux, 2017), although with uncertain accuracy. Be-
cause this approach requires equilibrium conditions in
the plant, the method is somewhat slow, and is mostly
applied to a very limited numbers of plants. It does have
the advantage that it can be used in the field.

The most common approach is to assess soil water
content changes over time at a few different locations,
i.e. typically using time domain reflectometers (TDR;
Vandoorne et al., 2012). TDR is sensitive to the average
soil electric permittivity around the sensor and has an
accuracy to water content of ;0.01 cm3 $ cm23 and a
precision of;0.002 to 0.003 cm3 $ cm23 (Gong et al., 2003;
Cooper, 2016). We will show here that this is insufficient
for our purposes. Preferably such measurements are
combined with weight change measurements of soil col-
umns to assess plant transpiration rates (Halperin et al.,
2017). Due to the superposition of redistributive soil wa-
ter flow and RWU patterns, resolving these patterns
based on water content time series relies heavily on in-
verse modeling using detailed (Koebernick et al., 2015) or
more simple soil–root hydraulic models (Cai et al., 2017).

Mathematical analyses of water flow in root hy-
draulic architectures, analogous to conductive electrical
networks (Alm et al., 1992; Doussan et al., 2006),
revealed that a first component of the spatial distribu-
tion of RWU rates is solely driven by root hydraulics,
architecture, and the total plant water uptake rate. We
refer to it as “plant-driven RWU distribution” here
normalized by soil layer volume (Up, cm3 $ cm-3 h21,
typically called “standard” [Couvreur et al., 2012]

or uncompensatedRWU [Simunek andHopmans, 2009]).
It only relies on plant features and integrates over space to
the total plant water uptake (pr2

R
z
Up z; tð Þdz5Utot tð Þ,

cm3 h21, which includes soil water used for transpiration
and growth). A second component additive toUp adjusts
RWU distribution to total soil water potentials, which is
the sumof soilmatric andgravitational potentials.We refer
to it as “soil-driven root water uptake redistribution,”
also normalized by soil layer volume,Us, cm3 $ cm23 h21,
typically called “compensatory” (Couvreur et al., 2012) or
“compensation” RWU (Jarvis, 1989). It relies on soil
water potential heterogeneity and spatially integrates
to zero as per definition. Note that here Us, Up, and
Utot are defined negative when removing water from
the soil. Only in limited cases (locally 2Us , Up) is
hydraulic lift observed (Caldwell and Richards, 1989).
The impact of these simultaneous processes on the
observed u-profile can be modeled employing an ex-
tended one-dimensional (1D) Richards equation fol-
lowing Couvreur et al. (2014a, 2014b):

∂uðz; tÞ
∂t

5Upðz; tÞ þUsðz; tÞ þ ∂
∂z

�
Kðuðz; tÞÞ

3

�
∂hðz; tÞ

∂z
2 1

��
þ
�
EsðtÞ; z5 0
0; z�0 ð1AÞ

where K (cm h21) is the soil unsaturated hydraulic
conductivity, h (cm) is the soil matric potential, and Es
(cm3 $ cm23 h21) is the soil surface water evaporation
rate per unit soil layer volume (pr2 $ Dz, with r as the
inner pot radius in centimeters).

Many of the parameters and variables in Equation 1A
are difficult to determine. Specifically, soil hydraulic
conductivity is difficult to measure and is often derived
theoretically with considerable uncertainty (Baroni et al.,
2010). Root architecture and hydraulic conductivity
data, which could be used to estimate Up and Us terms,
are also hardly accessible experimentally, although some
are available in the literature (Doussan et al., 2006;
Ahmed et al., 2018). Yet, root conductivity may change
with environmental conditions and can have a circa-
dian rhythm (Sakurai-Ishikawa et al., 2011; Caldeira
et al., 2014; Chaumont and Tyerman, 2014).

From a simpler perspective, the divergence of soil
water capillary flow rates and Us are both driven
by—and tend to reduce—soil water potential het-
erogeneity, while being instantaneously indepen-
dent of Utot. Therefore, we gather them under the
term “soil water redistribution,” Sr (s21, equal to
UsðzÞ þ ∂

∂z

�
Kðuðz; tÞÞ

�
∂hðz;tÞ
∂z 2 1

��
), in the following

version of Equation 1A:

∂uðz; tÞ
∂t

5 ÛpðzÞ$UtotðtÞ
V

þ Srðz; tÞ þ
�
EsðtÞ; z5 0
0; z�0 ; ð1BÞ

where V equals total soil volume, the normalized
variable Û^

p zð Þ5 Up zð Þ
Utot

$V (positive, and
R
z
ÛpðzÞdz5 1).
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Furthermore, Sr values are null when the total soil
water potential is spatially uniform, and by definitionR
z
Srðz; tÞdz5 0. The relevant processes are schemati-

cally presented in Supplemental Figure S1.
In this study, we present a sensor of soil water con-

tent, the soil water profiler (SWaP), and propose a
method to estimate the vertical distribution of the plant-
driven RWU distribution as demonstrated for maize
(Zea mays). Assuming that on an hourly timescale,
ÛpðzÞdoes not vary, e.g. no substantial growth and Sr
evolves linearly with small variations of h (soil matric
potential only), then relatively fast light-induced
modulations of Utot generate variations of the profile
of du(z)/dt directly proportional to ÛpðzÞ. Measuring
such small variations of du(z)/dt requires unprece-
dented precision, which can only be reached with the
new SWaP device presented in this article. The idea of
using day–night fluctuations of transpiration to sepa-
rate RWU from soil water flow using synthetic data
has been previously proposed (Guderle andHildebrandt,
2015). However, our approach is to perform it on
considerably shorter timescales with experimental
laboratory data.

RESULTS

Sensor Characteristics

We constructed a sleeve-like sensor with two op-
posing copper sheets (internal diameter of 9 cm, sheet
area of 537 cm2) that function as a capacitor (Fig. 1A)
with a pot (9-cm diameter, 50-cm length) standing free
within the sensor.When the sleeve with copper plates is
connected to a coil this yields a resonant circuit whose
resonance frequency (f) depends on the capacitance (C)
as follows: f ; 1/=C. This circuit is coupled induc-
tively, via a second, identical coil with 2-mm spacing, to
a vector network analyzer (VNA) working in input re-
flectionmode (S11) to determine the resonance frequency
(an example is shown in Fig. 1B). The resonance fre-
quency depends on the average permittivity between the
copper plates (see “Materials and Methods”) and can
therefore be used to determine u(z) using a calibration
curve (Fig. 1D). The system has beenmultiplexed to four
sensors using a PIN diode switch, with all four sensors
being shifted longitudinally by a stepper motor along a
linear axis. This construction forms our SWaP.
The four independent sensors have an average reso-

nance frequency of 250.4 MHz (SD 5 1.4 MHz) when
unloaded, which drops to 156.9 6 1.3 MHz when our
soil is water-saturated (u 5 0.32). The deviations of the
resonance frequencies under climate chamber condi-
tions equaled 3 kHz. The relative electric field (E-field)
vertical distributions of each of the sensors are dis-
played in Figure 1C, expressed in frequency shifts rel-
ative to the unloaded resonance frequency (f0; Sydoruk
et al., 2016). Each data point represents four individual
resonance frequency measurements. Additionally, the

simulated E-field distribution of a sensor as calculated
on the platform Comsol (https://www.comsol.com/)
is added to Figure 1C (see “Materials and Methods”).
The simulated andmeasured E-field distributions agree
to a very large extent that gives confidence that the
simulation model can also be used to predict other
features of our setup.Whereas the total E-field depth (in
z-direction) covers 12 cm, 95% of the summed field
strength, corresponding to its sensitivity, occurs with
the inner 8 cm. The simulated horizontal field distri-
bution is presented in Supplemental Figure S2.
Because the electric permittivity is also temperature-

dependent and the climate-chamber lamps cause small
variations in temperature, the influence of temperature
on the resonance frequencywas determined. Across the
temperature range of 16°C to 24°C, we recorded a 126
4 kHz °C21 temperature-drift coefficient. Furthermore,
we verified the dependency of the resonance frequency
on different nutrition solution strengths, tested up to 7
mS cm21, but observed no influence on the resonance
frequency in the tested range.
The sensitivity of each of the sensors to known soil

water content, determined gravimetrically, was deter-
mined in stationary mode that yielded the calibration
curves, plotted in Figure 1D. The calibration curves
could be fitted with a second-order polynomial with an
average 95% confidence interval (CI) of 0.003 cm3$cm23

and an average initial slope of 2.67 MHz cm3 $ cm23.
We excluded from the calibration those samples that
were verywet (u between 0.16 and 0.32), as in our sandy
soils such wet samples were very sensitive to handling.
These wet samples compacted easily and built up
nonlinear soil water content gradients quickly. At full
saturation, measured with a closed base, no soil water
content gradients occur, so this point could also be
measured reliably.
In addition to the calibration at known soil water

contents, the sensor’s response to soil-filled tubes was
simulated using a physical model of the sensor using
the platform Comsol. The results of these simulations
are also presented in Figure 1D (solid line), showing
good agreement with the measured data with a root
mean square error of 0.68 MHz.

Scanning Mode Validation

Given the good results for homogeneous samples, we
tested the SWaP in scanning mode on nonhomoge-
neous samples. Such scans were performed automati-
cally to measure u-profiles for four 45-cm soil columns
with and without maize plants every 24 min. Two steps
were required before profiles of u or du/dt could be
determined: deconvolution over space, and conversion
of resonance frequency data to u. Deconvolution is a
procedure that corrects for the fact that our sensor is
sensitive over a length (z9) of 12 cm instead of the de-
sired resolution of 1 cm. Each 1-cm layer contributes to
the capacitance weighted with the relative electrical
field strength at that position. This contribution can be
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Figure 1. Schematic drawing of the SWaP, the raw data it generates, and relevant curves to calculate soil water content (u)
profiles. A, Drawing of the SWaP without casing, showing the copper sheets (brown areas, one marked with Cu) that function as
capacitor. B, The two radio frequency (R.F.) coils inductively coupling the sensor to a VNA that generates input reflection (S11)
data. a.u., Arbitrary units. C, The relative E-field distribution, expressed in frequency shifts relative to the unloaded resonance
frequency (f0), E(z9) of each sensor (represented by different symbols) and the simulated E-field using the platform Comsol (black
line). D, Calibration curves of the soil water content (u) against the resonance frequencies for all sensors (represented by different
symbols). Black line represents the predicted sensor response (see “Materials and Methods”).
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retrieved by measuring at several z-positions and un-
doing the sensors’ convolution or blending using a
deconvolution procedure. The deconvolution and cali-
bration procedures are described in more detail in
“Materials and Methods.”
First, we demonstrate how the model-constrained

deconvolution method performs under realistic cir-
cumstances, including the presence of a plant. In
Figure 2A, a typical resonance frequency profile (solid
circles), the fitted model of the data before deconvolu-
tion (f(z), solid red line) r2. 0.99, and the deconvoluted
model (g(z), dashed blue line) are presented for a soil
column close to water holding capacity. As expected,
the deconvoluted model deviates significantly from the
raw data at the edges, because the permittivity outside
the soil columns has very different values and is
blended with those inside the soil column owing to the
sensor’s sensitivity profile. Because of the very low
noise of our sensor, an equidistant three-point time
derivative of the scanning data can be made for each

z-position. Figure 2B presents the change of the reso-
nance frequency profile with time for 45 z-positions for
two different cases: one with a transpiring maize plant
during daytime (solid circles), and one with a maize
plant at night (gray squares). Here too, the modeled,
convoluted polynomials, df(z)/dt (solid red line) and
r2 . 0.99 (magenta line), follow the data quite well. The
deconvoluted model, dg(z)/dt, is presented by dashed
blue or cyan lines. Both g(z) and dg(z)/dt can be con-
verted to u(z) and du(z)/dt, respectively, using the
calibration curve.
Second, we compared u(z) obtained using the SWaP

with two types of measurements.
Type I: After a SWaP scan, small quantities of soil

were excavated (10 to 20 cm3) at known positions, for
which the local water content was determined gravi-
metrically. These values were compared to u(z) mea-
surements with the SWaP in scanmode. The results and
fit (y 5 0.0013 1 0.997x) are plotted in Figure 2C with
the 95% CI as dashed lines. At the bottom of the soil

Figure 2. Typical frequency profiles along soil-filled columns, the time derivatives thereof, and some validation data. A, Profile of
resonance frequency, f(z) (black dots); the fit results (red lines); and the deconvoluted frequency profile g(z) (dashed blue line). B,
Profile of time derivative of the frequency profile, df(z)/dt for soil columnwith maize plant during daytime, df(z)/dt (black dots), fit
results (red line), and dg(z)/dt, the deconvoluted time derivative (dashed blue line); and during night-time, df(z)/dt (black squares),
fit results (magenta line), and dg(z)/dt (dashed cyan line). C, Gravimetrically determined soil water content (u versus u) obtained
with SWaP and the fit (y 5 0.0013 1 0.997x) with the 95% CI (dashed lines). D, Change of soil column water amount versus
sequential additions of 20 mL of water including fit (black line) and the CI (dashed lines).
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column, where u is largest, we observe a reduced ac-
curacy of ;0.005 cm3 $ cm23—probably due to devia-
tions of the E-field distribution close to sharp edges.
Moreover, at the edges, both at the top and the bottom,
noise is enhanced because these slices were measured
less frequently.

Type II: We added known amounts of water to the
soil columns and monitored the change of the inte-
grated amount of water as determined by the SWaP.
The smallest amount of repeatedly added water we
could detect was 20mL for our 2.4-L soil columns. These
results are presented in Figure 2D. We found a slope of
1.1 (r2 5 0.993; CI 5 8 mL).

Quantification of Plant Water Uptake and Redistribution
in Soil Columns

Soil water depletion measurements in cylindrical
pots with growing maize seedlings started after the
shoot emerged from the soil, 4 d after sowing (DAS). At
the three-leaf stage (11 DAS), oscillations of the soil
water depletion rate caused by the light-induced,
modulating transpiration rate of the maize plant were
sufficiently large to distinguish them from temperature-
related oscillations on a local (z) level, but insufficient to
perform a reliable analysis. After a few more days, an
increasing shoot size caused increased soil water-
depletion rates and more pronounced modulations
thereof, which is exemplified in Figure 3. Figure 3A
depicts two soil water-content curves measured over a
3-d period at a relatively low depth (z 5 8 cm) relative
to the surface. The combined noise and temperature
drift of these curves was as low as 631025 cm3 $ cm23.
The blue data points were acquired starting at nine
DAS and the black data points at 15 DAS. The time
derivatives of these traces, the soil water-depletion
rates, are plotted in Figure 3B. Additionally, the sum
of the soil water depletion rates of the whole column
(∑
z

∂u z;tð Þ
∂t 5 Utot tð Þ

A∑z△z
þ Es tð Þ) starting at 15 DAS is plotted

(red line), scaled down by a factor of 10 for visual
comparison. Soil water depletion was clearly faster
during daytime (orange blocks at the bottom of
Fig. 3B). Within each day, three oscillations of Utot
synchronous with high- and low-light levels in the
chamber are visible (range annotated by arrow labeled
“M”; low daytime Utot annotated by arrow labeled
“NM”). We also note that during the night, while the
column is still losing water (red line), the zone at z 5
8 cm shows some positive values for du/dt at night,
indicative of a form of redistributive water flow.

Disentangling the Up component of RWU from soil
water redistribution (Sr; see Eq. 1B) required the esti-
mation of Utot and Es, as well as the simplifying as-
sumption that within a 12-h window, Sr is well
described by a linear regression: Sr(z,t)5 p1(z)1 p2(z) $
t. This is the simplest model for Sr that is physically
sensible, as we know that RWU induces changes of h(z),
driving variations of soil water redistribution over time

(see further below for supportive data). The fact that
Utot, Sr, and Ûp vary on different timescales (see further
below) allowed the use of clearly distinct functions to fit
the du/dt data.

Based on Equation 1B and the simplifying assump-
tion of Sr, the local soil water depletion rate at any given
position (z) within a 12-h windowwas thus modeled as

ð2Þ∂uðz; tÞ=∂t5 ÛpðzÞ$UtotðtÞ
V

þ p1ðzÞ þ p2ðzÞ$t

þ
�
EsðtÞ; z5 0
0; z�0

; ð2Þ

Evaporation was determined independently by moni-
toring soil water depletion in a column without a plant,
and subtracted from evapotranspiration, which is esti-
mated as the spatial integral of the soil water depletion
rates, to yield Utot. The remaining unknowns ÛpðzÞ,
p1ðzÞ, and p2ðzÞ were fitted by least-square regression
of du/dt, e.g. dashed blue lines and black data points
in Figure 3, C and D, respectively, for each z-position
independently. The modulation amplitude of du/dt
relative to M in Figure 3B is sufficient to determine
Ûp. Up(z,t) was then calculated by multiplying ÛpðzÞ
and Utot(t). Even though the parameterization was
completed independently for each depth, the vertical
integrals of ÛpðzÞ and of p1ðzÞ þ p2ðzÞ$t always con-
verged to 1 and 0 with accuracies of 1025 and 1027,
respectively.

In Figure 3, C and D, soil water depletion rate data at
two depths is presented for two different maize plants
with different rooting depths, as evidenced bymagnetic
resonance imaging (MRI) data, with t 5 0 h when the
lights are switched on. Figure 3C depicts du/dt data
collected from a well-watered, shallow-rooted maize
plant in a well-rooted zone (z5 8 cm, black circles) and
a nonrooted zone (z 5 21 cm, gray squares) a few cen-
timeters below the deepest root. High light periods are
denoted by yellow blocks at the bottom of Figure 3D.
The plant-driven component of RWU normalized by
the soil layer volume was isolated based on Equation 2
(red line; z 5 8 cm, dashed magenta; z 5 21 cm). Its
summation with Sr adequately fits the measured
du(t)/dt data at z 5 8 cm, represented by the blue
dashed line, r2 5 0.95. In the nonrooted zone (Fig. 3C,
z 5 21 cm) we find no evidence of RWU (see magenta
dot-dashed line for Up), but we do observe soil water
depletion owing to vertical soil capillary flow. Here,
squares and cyan line present measured and modeled
du(z,t)/dt, respectively, which follows our simple
model Sr(t)5 p1 1 p2 $ t. The same type of data and its
model results are presented in Figure 3D for a well-
watered, deeper-rooted plant, but with a higher root
length density (RLD) at z5 8 cm (black circles) than at
z 5 21 cm (gray squares, r2 5 0.95).

Plant-drivenwater uptake distribution and soil water
redistribution were calculated as described above for
each layer. The corresponding profiles are plotted in
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Figure 4, A and B. Additionally, the RLD distribution
(RLD[z]) obtained from MRI root images and subse-
quent analysis with NMRooting (van Dusschoten et al.,
2016) is presented using black squares, and inverted for
easy visual comparison. Up (t 5 8 h) is represented by
the solid red lines for a shallow-rooted maize plant in
Figure 4A and a deep-rooted maize plant in Figure 4B.
A strong correlation between plant-driven RWU and
the RLD distribution was observed for all four maize
plants whenever the soil column was close to its water-
holding capacity, as it was watered the day before and
had a rather uniform soil water matric potential. See, as
an example, the lower line in Supplemental Figure S4;
themaximumdifference between the bottom and top of
the soil column is 23 kPa in matric potential. The
Pearson correlation coefficient between RLD(z) and
Up(z) ranged between 0.89 and 0.95, for four plants at
seven different instances, with a minimum modulation
in uptake rate amplitude of 0.3 cm3 h21. The dotted

magenta line represents the soil water depletion rate
(t 5 8 h), and only roughly follows RLD(z), with a
Pearson correlation coefficient of 0.6. Note that, at the
bottom, the soil water depletion rate (t 5 8 h) turns
positive, owing to earlier watering from the top and
subsequent, downward movement of this water.
Our analysis also yields soil water redistribution

profiles that we assume are linearly dependent on time
within each 12-h window, as a first-order approxima-
tion. To validate this assumption, we compared the
measured soil water depletion rates at night (repre-
sented by red and blue dots in Fig. 4C) for deep- and
shallow-rooted plants, respectively. Here, plant water
uptake is minimal, so that we approximatively mea-
sured Sr(z), with extrapolated Sr(z) based on our model
(see red and blue curves in Fig. 4C). The measured and
model-based, extrapolated Sr(z) agreed reasonably well
(r2 . 0.9 for both plants). This suggests that our linear
model for Sr is a reasonable assumption.

Figure 3. Soil water depletion curves of soil columns with maize plants. A, Three-day period time series of soil water content,
u(z5 8 cm) with a transpiring maize plant starting at 9 DAS (blue data points) and 15 DAS (black data points). B, Same data but
now soil water depletion rate du(z 5 8 cm)/dt. Added is a Utot1Es curve (evapotranspiration rate), scaled down for visual
comparison (red squares). Orange squares at the bottom denote daytime. The relative amplitude of the Utot modulation is in-
dicated by the lengths of the arrows labeled “M” and “NM” (nonmodulated transpiration). C, Time series of soil water depletion
rate, du/dt for shallow-rooted maize plant over 12-h period after lights were switched on (15 DAS). Yellow blocks at the bottom
indicate high light. Black dots are du(z)/dt; red line is plant-driven RWU, Up(z 5 8 cm); dashed blue line includes soil water
redistribution. Gray squares are du(z)/dt, magenta dash dots are Up(z 5 21 cm), dashed cyan line includes soil water redistri-
bution. D, Time series of a deeper-rooted maize plant. See C for explanation.
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For the above analysis, we assume that ÛpðzÞ is time-
invariant during the 12-h experimental time window.
This can be verified by reducing the time window for
the analysis to 4 h and performing the analysis for three
subsequent time periods on 1 d. We performed this
check for 12 different whole-day measurement series
(three plants on four different days each) and found low
SDs among the three 4-h time-periods ÛpðzÞ values for
each plant during the 12-h periods (average SD ,
0.0075). This confirmed that in these experiments ÛpðzÞ
was sufficiently stable during the day (Supplemental
Fig. S3).

Proof of Concept of ÛpðzÞ Retrieval Using In Silico
Observations

To verify if known plant-driven RWU rates could be
accurately estimated from the soil water depletion rate
under modulating plant transpiration rate, we used
numerical simulation of soil–plant hydrodynamics to
generate in silico observations of soil water depletion
rate profiles, and then applied Equation 2 to retrieve
ÛpðzÞ. The results of these in silico experiments are
presented in Supplemental Figure S5 with a more ex-
tensive description. The main findings are that ÛpðzÞ is
retrieved most reliably when the modulation period
is short, at maximum six hours, otherwise ÛpðzÞ is
smeared out over 5 cm or more. Also, ÛpðzÞ is retrieved
more reliably when soil conductivity is lower in the
sense that less smearing occurs.

From the comparison between our imposed and re-
trieved Ûp profiles, we conclude that the proposed
approach of soil water depletion rate profile monitoring
under modulating transpiration rate is a reliable method
to separate profiles of plant-driven RWU from soil
water redistribution, given the sufficient sensitivity
of the SWaP device.

RWU in Drying Soils

In conditions close to soil water-holding capacity, the
investigated maize plants showed a higher RWU rate
near the soil surface (Fig. 4B), closely related to the
higher RLD there. In consequence, water depletion was
more pronounced in the upper half of the profile, gen-
erating substantial vertical gradients in u and soil water
potential over timescales of several days. Under such
conditions, we observed increasing rates of soil water
content change lower in the profile. DisentanglingUp(z)
from Sr(z) with Equation 2 allowed us to interpret that
this trendwas caused by a net downward trend ofUp(z)
on four consecutive days, as depicted in Figure 5A.
Here data are presented always 4 h after the light was
switched on. On the fourth day (26DAS) after watering,
the maize plant reduced its transpiration rate consid-
erably after 4:00 PM, so these data were excluded from
the analysis as presented here. The soil water matric
potential data for these measurement days is given in
Supplemental Figure S4. The difference in soil water
potential between the top and the bottom consecu-
tively reached 3, 15, 80, and 430 kPa during these 4 d.
Figure 5B depicts a comparison between two in-
stances, one with high, the other with lower light, for
Up(z), red and blue lines respectively, and the con-
current soil water depletion rates, the red and blue
circles, on 25 DAS, which is 3 d after watering. The
differences between Up(z) and the soil water depletion
rates are caused by soil water redistribution (Sr),
which is nearly identical for both instances (reduction
of ,5.1025 cm3 $ cm3 h21 during 2 h). The data shows
clearly that at high light, the soil water depletion rate

Figure 4. Depth profiles of Up(z), RLD(z), Sr(z), and du(z)/dt. A, Plant-
driven RWU, Up(z) of a shallow-rooted maize plant (red line) and the
inverted RLD profile,RLD(z) (black squares), and du/dt at noon (15DAS,
magenta dots). B, Same data as A for a deeper-rooted maize plant. C,
Soil water depletion rate, du/dt shortly before lights were switched on
for twomaize plants at 15DAS (red circles, shallow-rootedmaize plant;
blue circles, deep-rooted maize plant) and the predicted soil water re-
distribution Sr (red line, shallow-rooted maize plant; blue line, deep-
rooted maize plant) for both plants.
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profile better approximates Up(z) than at lower light,
where the depletion rate has a completely different
profile and is nearly flat.
In Figure 5C, the ratio of Up(z) to RLD(z) is used to

color an MRI image of a root system, which approxi-
mates the RWU per unit length of root when redis-
tributive water uptake (Us) is minimal because of the
small soil matric potential difference (3 kPa) at this
time. Figure 5D presents the same ratio under a vertical
difference of 430 kPa, with u ranging from 0.07 to
0.025 cm3 $ cm23 from bottom to top of the column. To
determine the correct soil water content numbers, MRI
data were used to correct for the root mass, which is
also detected by the SWaP and cannot be distinguished
from soil water. Especially when the soil is dry this
correction is important because the amount of water in
the roots (;1% volume at the top) is comparable to the

soil water content, being in the range of 2.5%. Ignoring
this contribution leads to a considerable underestima-
tion of h(z). This error is typical for sensors that depend
on the electrical permittivity to determine soil water
content, like TDR. The changes of the root lengths over
the 4-d period are clearly not mimicked by the ratio of
Up(z) to RLD(z), which suggests that root hydraulic
properties may have been altered between the wet
and dry conditions.

DISCUSSION

Our results show that we successfully developed an
accurate (0.002 cm3 $ cm23) and especially highly pre-
cise (6.1025 cm3 $ cm23) soil water content sensor
adapted to soil columns in climate chambers, more than

Figure 5. Effect of progressive drying of soil on the plant-driven water uptake distribution. A, Plant-driven RWU, Up(z) on four
consecutive days (23, 24, 25, and 26 DAS; black, red, blue, and magenta lines, respectively). B, Effect of light intensity on the soil
water depletion rate, du/dt (circles) in comparison to Up(z) (lines) on 25 DAS. High light, red circles and lines; low light, blue
circles and lines. C, Root maps of a maize plant at 21 and 27 DAS color-coded by normalized plant-driven RWU (divided by RLD
3 column V), Up(z)/RLD(z) $ V. D, Same type of data as in C, now on 26 DAS.
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an order-of-magnitude more precise than commonly
available tools like TDR and frequency domain reflec-
tometry (Cooper, 2016). Furthermore, the sensor’s 1D
spatial resolution theoretically reaches 1 cm, and its
continuous nature also allows spatial integration of u(z)
to track a soil column’s total water content dynamically
for multiple columns simultaneously. We determined
local soil water content depletion rates and their vari-
ations as induced by transpiring maize plants. At an
hourly timescale, modulating transpiration with vary-
ing light intensities allowed decoupling of the plant-
driven RWU from the soil water redistribution signals
quantitatively.

The SWaP Sensor Specificity

Because resonance frequencies can be determined
very accurately, we build the soil water-content sensor
as a resonant circuit. Also, we placed the copper plates
that form a capacitor outside of our medium such that a
more homogeneous E-field is generated, especially in
the horizontal plane. Compared to TDR or frequency
domain reflectometry sensors (Bore et al., 2016), this
gave a better weighing of the different regions within or
around the sensor (see Supplemental Fig. S2). As we
demonstrated in the results, our design with inductive
coupling and shielding results in a sensor with a very
high, usable dynamic range factor of 20,000.

The gain in accuracy is also very good although not
as high, because water distribution in larger volumes is
not a priori known relative to the E-field distribution.
Therefore, calibration was not possible between 16%
and 32% because of rapid downward water mobility,
causing a gradient in water distribution, and thereby
soil compaction, which may be a limiting factor for
accuracy. During scanning, at the edges of the soil col-
umn, the E-field distribution is distorted and errors in
the range of 0.5% to 1.0% may be expected, and in our
validation we never found deviations. 1% (see Fig. 2).
This means that scanning does not introduce additional
errors except for close to the soil column edges. We
obtained confirmation for the quality of the scanning
data when we added water volumes, down to 20 mL, at
the top of the soil column and were able to detect the
change with sufficient accuracy (see Fig. 2D). This ex-
periment was performed under laboratory conditions,
otherwise temperature fluctuations would have masked
the small frequency changes caused by adding such
small amounts of water to a large column. Temperature
sensitivity of the sensor can pose a problem when tem-
perature is not precisely controlled. Despite the above
limitations, the overall performance of the SWaP offers a
considerable improvement in soil water content profil-
ing, especially in regard to the simplicity and cost of the
equipment. This ability to determine soil water content
profiles by itself is very useful and important, as it pro-
vides a rapidmethod to determine the soil water content
profile in relation to plant performance, like growth and
transpiration related to soil water distribution.

The variations in du(z)/dt were detectable at a very
early stage when the leaf areawas;20 to 30 cm2. At 8 cm
below the surface we initially only observed the indirect
effect of surface evaporation on soil water depletion,
which is slightly higher with light than without (Fig. 3, A
and B). In an earlier implementation of the SWaP where
the resonance frequencywas simply approximated by the
frequency showing minimal reflection, noise levels lim-
ited our precision to 0.1% to 0.2% cm3 $ cm23, comparable
to high-end TDRs (Gong et al., 2003). These noise levels
were still ;10 times too high to detect the light-induced
variations in du(z)/dt (e.g. comparewith Fig. 3B). Even for
plantswith a leaf area of 400 cm2,whichdeplete soilwater
in a few days, noise levels of 0.1% cm3 $ cm23 are not low
enough to observe varying uptake rates, with typical
modulation amplitudes of du/dt of ,0.002 cm3 $ cm23

h21, when light levels change between 400 and 700 mE $
m2 s21. It requires very high precision u-measurements
to be able to observe the effects that we described here,
which explains why it is not described elsewhere. Once
the plants were sufficiently large, the modulation pat-
terns in the soil became usable for further analysis.

The temporo-spatial water content profiles that our
sensor collects may also be compared to those obtained
with NT. NT offers higher dimensionality (mostly 2D)
and spatial resolution, but is a very expensive technique
not generally available to plant biologists or hydrolo-
gists. The very precise soil water sensors that we
showed here are rather easy to build, and come at low
cost; our current prototype with four sensors cost
;1,500 € to build, is portable (can be used in climate
chambers) and is completely harmless to the plant. A
combination with a fully programmable water-cooled
LED panel should be profitable as it minimizes ther-
mal influences and should help with resolving light-
dependent and light-independent RWU rates. This
then constitutes a new, versatile tool to probe RWU
profiles in relation to water management strategies
and genotype-specific responses.

From Water Depletion Rate to Uptake and
Redistribution Profiles

We presented a simple model to quantify the fraction
of local RWU that varies proportionally to the plant
transpiration rate, or plant-driven RWU distribution
by layer-wise fitting soil water depletion rate data to
Equation 2 using total water uptakeUtot as independent
parameter. MeasuredUp(z) should closely approximate
RWU when the profile of soil water potentials is uni-
form (Couvreur et al., 2012). When it is not, the only
difference between Up(z) and du(z)/dt is the soil water
redistribution Sr(z; through soil and roots). This profile
can be estimated with a methodology also described by
Guderle and Hildebrandt (2015), provided that Sr var-
iations remain nonmodulating (owing to soil water
capacitance) during the light modulations.

By observing layers just below the lowest roots, in-
formation that we can glean from MRI data, we could
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verify experimentally that Sr does not fluctuate there
and also changes approximately linearly with time. An
example of the absence of modulations in the soil water
depletion rate is given in Figure 3C, but can be seen to
persist farther away from the roots as well (see Fig. 4A).
Additionally, our forward simulation studies (see
Supplemental Fig. S5) confirm that the effect of the
plant-driven RWU modulations on the soil water de-
pletion rate dampens out in the soil within a few cen-
timeters when thesemodulations occur within 6 h, even
when the simulated Up(z) has a sharp front. These
simulations therefore suggest this does not work well
on a day–night timescale. The combination of these
findings indicates that under the conditions we are
working with, Sr(z,t) should not show considerable
modulations.
In drying soil with a considerable vertical water po-

tential gradient (25 DAS), modulating transpiration rate
using moderate and higher light intensity levels (400
and 700 mmol m2 s21, respectively) was key to show
the independence between soil water redistribution
Sr(z) and Up(z) profiles, as demonstrated theoretically
by Couvreur et al. (2012). In contrast, Figure 5B shows
that their shapes differ significantly (see blue and red
circles du(z)/dt under moderate and high light, re-
spectively). Hence, in drying conditions RWU(z) is a
mix of independent shoot- and soil-driven water flow
dynamics,Up andUs, respectively. It also demonstrates
the importance of light intensity when studying plant
drought stress, as water-depletion zones will develop
quite differently under high as compared to low
transpiration rates.

The Plant-Driven Water Uptake Distribution as a Proxy
for RLD

Our results in soil close to its water-holding capacity
support experimentally the common assumption that
overall Up and RLD profiles scale proportionally (r2 5
0.95; Feddes et al., 2001; Lobet et al., 2014; Albasha et al.,
2015), here for young maize plants. The original un-
derlying hypotheses are that root axial conductivity is
highwhile root radial conductivity is relatively uniform
across roots (Steudle and Peterson, 1998), even though
some studies suggest this need not hold always (Ahmed
et al., 2018). Alternatively, a limiting axial root conduc-
tivity combinedwith a higher radial conductivity deeper
in the soil could yield the same results. The correlation
between RLD and du(z)/dt is also significant (r2 . 0.6),
but clearly lower than between RLD(z) and Up(z), be-
cause the causal relation between du(z)/dt and RLD(z) is
obscured by soil water redistribution.
Through the estimation of the “proxy” Up(z), the

transpiration modulation method, combined with the
SWaP sensor, can therefore also offer a simple way to
estimate the relative RLDprofile in soil columns close to
their water-holding capacity as a first-order approxi-
mation at least for maize. In the case Up(z) equals zero,
this is a good indicator of the absence of roots or at the

least active roots when plant water uptake is large
enough to be quantified.
However, plant-driven water-uptake profile and

relative RLD do not always match. The data in
Figure 5A indicates that the Up(z) peak shifts to deeper
soil layers over time, while the soil column is drying
out. This is not caused by inhomogeneous root growth,
as otherwise Figure 5D would still show a single color,
nor by passive adjustments of water uptake in response
to soil water potential heterogeneity, as Us is not in-
cluded in Up. Although for a given root system archi-
tecture Up(z) only varies with the system hydraulic
properties, this phenomenon most likely results from a
reduction of the hydraulic conductivity in the drier,
upper half of the column between the bulk soil and root
surface (Schroeder et al., 2008), at soil–root interfaces
(Carminati and Vetterlein, 2013), and/or across root
tissues (Hachez et al., 2012). Such reduced hydraulic
conductivities would prevent both the uptake and the
release of water by roots in the driest parts of the soil
profile, as confirmed by isotopic experiments (Meunier
et al., 2017b; Couvreur et al., 2020). Furthermore, the
soil–plant hydraulic conductance would as well be re-
duced, which was also recently confirmed (Hayat et al.,
2019), using a pressure chamber. All these studies are
in line with our observation of decorrelation between
Up(z) and RLD(z) resulting from changing hydraulic
conductivities in the soil–plant system.

Perspectives to Disentangle Soil Water Redistributive
Terms, through Soil and Roots

Plant-driven RWU can be a good approximation of
the actual RWU for soil columns close to water-holding
capacity. However, when considerable soil water po-
tential heterogeneities develop, passive adjustments of
water uptake, Us(z), independent from Up(z) or Utot,
occur, leaving our estimation of RWU incomplete.
With our methodology, Us(z) is lumped with redis-

tributive soil water flow in the Sr(z) term. To disentan-
gle these, one could estimate the soil–root system
hydraulic conductance from simultaneous transpira-
tion, soil, and stem water potential data, so that Us(z)
can be estimated using the macroscopic soil–plant hy-
draulic model adapted by Couvreur et al. (2020), which
runs in a simpler 1D domain, with few parameters.
Here, using the root pressure bomb (Passioura, 1980) or
the leaf pressure bomb, with which plant potential can
be determined (Tyree and Hammel, 1972), might pro-
vide a solution.
The determination of Up(z) at a range of u and

u-heterogeneity levels offers additional information
compared to what is normally available, i.e. du(z)/dt.
The real RWU profile should lie in between Up(z) and
du(z)/dt, but the part of the uptake that is dependent on
the shoot demand, the active part, at least can now be
determined. Additional measurements and data mod-
eling as discussed above should then allow the quan-
tification of the true RWU(z). Tracer studies can also be
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used to determine RWU(z), but rely heavily on model-
ing (Kühnhammer et al., 2020). NT clearly provides
more detailed information along a limited set of roots,
but heavy water must be added to the system to obtain
this information, thereby changing the uptake pattern
along all roots, especially in heterogeneously wetted
soil. Neither of the last two methods can be applied to a
large number of plants in a normal climate chamber
setting, whereas the SWaP can be. The SWaP and the
proposed light modulation methodology therefore of-
fer a considerable improvement in the toolbox of plant
physiologists interested in plant water usage, and
should provide new insights in RWU in realistic soil
environments.

MATERIALS AND METHODS

SWaP, Further Details on Hardware

The sensor part of the SWaP is a circular polyvinyl chloride (PVC) sleeve
where two sheets of copper (735 cm2) are glued on the inside, 9-cm apart on
opposite sides (Fig. 1A). These are connected via a 2-cm–wide coil, thus forming
a resonant circuit. The resonance frequency of this circuit can be determined via
the so-called input reflection mode (S11) of a VNA (DG8SAQ VNWA3; SDR-
Kits). The VNA performs a frequency sweep (here between 150 and 220 MHz)
and at the same time measures the reflected radio frequency-signals of the
sensor. The minimum reflection occurs at resonance, which was extracted by a
straightforward fit using a Lorentzianwith a “skewed” baseline as amodel, and
which yields our “raw” data in the form of resonance frequencies (Fig. 1B). We
linked the VNA to the sensor by means of a second single-turn coil, 2-mm apart
from the coil that is part of the sensor itself, by means of inductive coupling.
Inductive coupling works like a balun to the resonant circuit and, because the
plates are also symmetrical, creates a symmetrical electrical field distribution
throughout the object of interest. Also, cable capacitance is reduced on the
sensor side, increasing dynamic range and reducing influences of parasitic ca-
pacitances, e.g. to electrical ground. The sensor was screwed into an aluminum
socket (dimensions: outside diameter 5 17 cm; height 5 12 cm; internal di-
ameter 5 9 cm), further improving stability and noise.

The system has been multiplexed to four sensors, using a PIN diode switch
(catalogno. SP4T,CDS0624;Daico Industries),with all four sensors being shifted
longitudinally by a stepper motor on a linear axis (controlled via an Arduino
Nano combined with an A4988 driver, programmed via the software AVR
Studio 4 using the language C; https://atmega32-avr.com/). A Python script
controlled the VNA and the stepper motor and performed a fit to the frequency
spectra (Lorentzian and first-order polynomial) to extract the resonance fre-
quencies of each of the four sensors at 45 vertical positions along the tubes.

SWaP, Further Details on Data Analysis

The resonance frequency, f(z), of our sensor depends on the permittivity
distribution relative to the E-field distribution, E(z9), of the sensor. We do not
measure a local resonance frequency from which we would calculate a local u,
but instead we can determine the contribution, g(z), of a slice of soil to the
resonance frequency by repeatedly measuring the resonance frequencies at
well-defined positions along the tube, e.g. in 1-cm steps in the z-direction, and
perform a deconvolution afterward. For the deconvolution step, the relative
local E-field strength has to be known, which we obtained by moving a 1-cm-
thick, 9-cm-wide PVC disk within the sensor at 12 different z9 positions (25,
24,. 0.5, 6 cm, where 0 5 middle of sensor) while measuring the resulting
resonance frequency (see also further below). The local contribution to the
resonance frequency at a given position can now be obtained via a deconvo-
lution step by solving f(z) 5 E(z9)*g(z), where the asterisk denotes convolution.
Ideally, a deterministic deconvolution is applied to determine g(z), but noise
and small deviations of E(z9) compared to the measured one, at the edges of the
soil column, would cause distortions after deconvolution even on locations
where deviations of E(z9) do not occur. We therefore performed a model-
constrained deconvolution, by assuming that u and therefore g(z) is relatively
smooth and can be approximated by a high (seventh) order polynomial,

f ðzÞ5Eðz9Þ∗½gðzÞ5∑7
k5 0akz

k � . When we use this to model f(z), ak values can be
adjusted to minimize the squared differences with the measured resonance
frequency profile. This approach requires that the resonance frequencies be-
yond the soil edges are known, which can easily be measured separately.
Furthermore, the permittivity jumps at the soil edges should be minimized to
limit perturbations of E(z9) at these edges. This was achieved by adding slightly
wetted soil to the otherwise hollow stand for each of the four tubes and placing
five water-filled 25-mL vials next to the plants on top of the soil. The described
procedure then yields g(z), the deconvoluted resonance frequency profile. The
same procedure can also be followed to determine dg(z)/dt, with the advantage
that the resonance frequency changes beyond the soil edges can be set to zero.

To convert g(z) to u(z), we need to calibrate our sensors. Therefore we filled
fourteen 12-cm high pots (0.6 L)with oven-dried soil (loamy sandmixwith two-
thirds coarse sand; see van Dusschoten et al., 2016) to which known amounts of
waterwere added to achieve the desired u such that the average u in the pot was
between residual and saturated water content. We carefully mixed the soil
shortly before measuring to achieve a homogeneous distribution of water. Each
of the 14 pots was measured with the soil profiler in static mode four times.
Above 16% of soil water content, gravity causes water to flow downward,
which causes nonuniform water distributions. Also, upon handling, the risk of
soil itself flowing downward exists. Both factors prevent the use of very wet soil
being used for calibration, as resonance frequency shifts over time, and after the
containers are lifted out, or lowered into, the sensors. At full saturation, soil
water flows are absent, and compression can be reverted by carefully turning
the closed container upside down. The values u(z,t) and du(z,t)/dt can now be
calculated using the calibration curve via a straightforward root-finding pro-
cedure. Summation of u (cm3 $ cm23) and multiplication with volume yields
total amount of water of the soil column, which includes root water when a
plant is present. MRI measurements of root systems can be used to correct for
this error (see below).

Physical Modeling of Sensor

We simulated the complete structure of the SWaP using the platformComsol
(COMSOL Multiphysics). The simulation was used to calculate the E-field
distribution of the sensor and its response to loading it with a PVC tube filled
withwetted soil.Wetted soil was approximatedwith artificial material having a
dielectric permittivity, «soil 5 3, 5, 10, 15, and which was virtually placed in
between the SWaP’s plates. The results were then fitted to the Landau-Lifshitz/
Looyenga equation (Nelson, 2005) relating u to soil permittivity, after minor
rewriting:

«soil 5

�
rsoil
rSiO2

ffiffiffiffiffiffiffiffiffiffi
«SiO2

3
p þQ$

ffiffiffiffiffiffiffiffiffiffi
«H2O

3
p þ

�
12

rsoil
rSiO2

2Q

��3

; ð3Þ

where 4:36, «SiO2 , 4:58 and, «H2O 5 81:7 (at 150 MHz and 20°C), are the di-
electric constant of quartz and water respectively, rsoil is the density of a soil
(here rsoil 5 1:71  g$cm2 3), and rSiO2

5 2:65  g$cm2 3 is the (particle) density
of SiO2.

The vertical E-field distribution for the SWaP depends on the permittivity
gradient within the sample. Whereas normally u is smooth, this is not so at the
edges where we expect distortions of the E-field. However, the E-field distri-
bution needs to be sufficiently stable to perform deconvolution of the frequency
data. Using Comsol, we simulated the effect of considerable jumps in permit-
tivity. In our simulated physical model we inserted a dielectric cylinder, having
dielectric constant «insert, with a diameter equal to the outer pot diameter at the
bottom edge of the pot and simulated this structurewhen it is placed at different
z-positions from the center of the SWaP. The simulated resonance frequency
distributionswere comparedwith ones based on the assumption that the E-field
is unmodified by sharp changes, and the residuals were calculated as a function
of «insert. For 2, «insert , 4, the E-field distribution had the smallest deviations
from the assumed E-field distribution. Therefore we increased the E-field dis-
tribution stability at the edges of the SWaP by filling the hollow foot on which
our PVC pots stand with wetted loamy soil and placing five 2.5-cm–wide vials
filled with water on top of the column.

Simulations of Soil Water Flows Based on the Extended
Richards Equation

To solve the extended Richards equation for our sandy soil, it is necessary to
determine the soil water retention curve and obtain the van Genuchten
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parameters of this soil. Furthermore, the hydraulic conductivity, K(u) or
K(h), needs to be calculated for our soil using Mualem’s theorem (Mualem,
1976), i.e. hydraulic conductivities K(u) are calculated by numerical ap-
proximation of the Mualem Integral because we use a van Genuchten curve
with variable parameter m (van Genuchten, 1980) implemented in Python
(Bittelli et al., 2015). Here we used the same shape of K(u) but with various
Ks values (the soil conductivity for saturated soils) ranging from 2.5 to
20 cm h21.

Input RWU(z,t) was modeled using a sine-function with a DC offset that
prevents positive values. The resulting gradients in soil water content and
potential drive the Sr. From the simulated u-values, we computed ÛpðzÞ in the
same way we do with the experimental data.

An artificial Ûp profile was constructed (a simple step function, with sum of
1) as a vector over space (45 layers) and multiplied component-wise with the
total transpiration vector (entries in time direction). In this mannerwe obtain an
imposed RWU matrix in space and time, which is then used as input for the
numerical solution of the Richards equation. The 1D finite volume method is
supplied with an initial u(z,0). After this simulation of soil water content
propagation, we get a discrete soil water content gradient in time and we can
use the identical multiple linear regressions as discussed above to obtain ÛpðzÞ
and Sr(z,t).

MRI

Three-dimensional images of themaize (Zeamays) rootswere acquired using
a 4.7-T wide bore (310 mm) magnet (Magnex) equipped with a gradient coil
(internal diameter 5 205 mm) with gradients up to 300 mT m21. A Varian
console was used for control of the MRI experiments. Root lengths were cal-
culated using the software NMRooting (van Dusschoten et al., 2016). Root mass
density profiles were determined using a Spin Echo Multiple Slice sequence
with reduced resolution (0.753 0.753 4 mm3, compared to 0.53 0.53 1 mm3

for the normal imaging), which facilitates a shorter echo time (TE5 4ms instead
of 9 ms), thereby minimizing the potential artifact caused by air-filled inter-
cellular spaces. The root mass density is required to correct u as measured with
the SWaP, because root mass cannot be discriminated from soil water based on
permittivity. Especially for making correct calculations of the soil water po-
tential, this is required. These MRI measurements were performed on regular
intervals.

For a comparison of RWU profiles between 2 d, it is useful to correct for root
growth, e.g. dividing RWU(z) by RLD(z) for the relevant days. RLD(z)’s values
for 22 and 26 DAS (days of SWaP measurements) were interpolated values
based on the MRI root images taken on 21 and 27 DAS. In this manner, maps in
Figure 5C were calculated

Water Potential Measurements

For determination of the pF-curve, we used two approaches. To determine
the water retention close to soil water saturation, we filled a cylinder with
45 cm of soil and wetted it from above, making sure that water was draining
from the bottom. This soil column was scanned with the SWaP continuously
for 8 d until no further changes in the soil water profile were detected and
residual water droplets were still visible at the bottom. In that case, the water
head is identical to the soil water content of these 45 cm (starting with h 5
0 cm at the bottom). At the dry end of the pF-curve, we used a polymer
tensiometer.

Plants and Growing Conditions

Four maize plants were grown in a climate chamber with 14- to 10-h day-
light/night rhythm. Air temperature at night was set to 16°C, with 22°C during
daytime. Air relative humidity at night was at 55%6 2% and during the day at
43% 6 2%. During the day, lights were switched between 400W HPI lamps
(Philips) and 400W SON-T lamps (Philips) every 2 h, resulting in a difference
of light intensity between 250 and 350 and 600 to 700 mmol ∙ m2 s21 and also
0.5°C to 1°C difference in temperature. Owing to the large temperature jump
when lights are switched on the first time, the first 2 h after daybreak were
not used.

Maize seeds were inserted into a soil mix (two-thirds coarse sand and one-
third loamy sand from a field site near Kaldenkirchen, Germany), which was
wetted close to field capacity. Seeds were left to germinate in the climate
chamber. The soil was covered by a perforated piece of plastic that reduced soil

water evaporation. Once the plant was longer than 4 cm, five small water-
containing vials used to minimize permittivity jumps at the soil edge were
placed on top of the soil. Plants were watered weekly to prevent the plants from
wilting.

The soil water-content profile of each potted plant was measured every
24 min during a 3-d period and a 4-d period, each after watering, for the data
analysis described here; each profile consists of 45 measurements at different
depth positions (z 5 0 at the soil surface). All profiles were independently
deconvoluted, resulting in 60 profiles g(z) per day. Thirty-one of these profiles,
during the 12 h of light switching, were used to calculate the 45 Up(z) and Sr(z)
values on each of the 7 d that data were acquired for all four plants. For de-
termination of the correlation between RLD(z) and ÛpðzÞ, one plant on one of
the 2 d that the soil water potential was flat (,3 kPa difference) experienced
dripping water from the climate chamber ceiling so its data were rejected.
Therefore, seven instances (four plants on two separate days minus one in-
stance) could be used for the correlation. Other relevant data presented here
describes results of single 12-h measurement periods of single plants (45 z-positions
at 31 different time points).

Data and Code Availability

The data that support our findings of this study are available from http://
www.fz-juelich.de/ibg/ibg-2/SWaP and code required to analyze the data are
available at the same location.

Supplemental Data

The following supplemental materials are available.

Supplemental Figure S1. Schematic representation of relevant soil water
depletion processes.

Supplemental Figure S2. E-field distribution map of a sensor.

Supplemental Figure S3. Depth profiles of ÛpðzÞ.
Supplemental Figure S4. Water head of soil water columns with growing

maize plant.

Supplemental Figure S5. Simulation results from soil water depletion rates
with modulated plant transpiration rates.
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