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A soil coring protocol was developed to cooptimize the estimation of root length distribution (RLD) by depth and detection of
functionally important variation in root system architecture (RSA) of maize and bean. The functional-structural model
OpenSimRoot was used to perform in silico soil coring at six locations on three different maize and bean RSA phenotypes.
Results were compared to two seasons of field soil coring and one trench. Two one-sided T-test (TOST) analysis of in silico data
suggests a between-row location 5 cm from plant base (location 3), best estimates whole-plot RLD/D of deep, intermediate, and
shallow RSA phenotypes, for both maize and bean. Quadratic discriminant analysis indicates location 3 has ~70% categorization
accuracy for bean, while an in-row location next to the plant base (location 6) has ~85% categorization accuracy in maize.
Analysis of field data suggests the more representative sampling locations vary by year and species. In silico and field studies
suggest location 3 is most robust, although variation is significant among seasons, among replications within a field season, and
among field soil coring, trench, and simulations. We propose that the characterization of the RLD profile as a dynamic rhizo
canopy effectively describes how the RLD profile arises from interactions among an individual plant, its neighbors, and the
pedosphere.

1. Introduction

The spatiotemporal deployment of roots in soil is of increas-
ing interest as agricultural scientists seek to understand how
root placement relates to the capture of soil resources [1–7]
and carbon sequestration [8, 9]. Optimizing soil resource
acquisition while limiting resource loss and increasing car-
bon sequestration would contribute needed resilience to a
world experiencing climate change and soil degradation [2,
10–12]. Recent research has supported the connection
between root deployment and resource acquisition in a vari-
ety of crops, see Tracy et al. [13] and Ye et al. [7] for recent
general reviews. Substantial opportunity costs and tradeoffs
mean that simply increasing overall root length is not the best
strategy for all environments [2].

Therefore, it is important to effectively characterize root
length distribution across depth in annual row crops. Root

length within a given soil layer is commonly reported as root
length density (RLD) with units cm root per cm3 soil [4, 14].
There is much debate on protocol selection and specifically
on how to balance intensive and extensive sampling [15,
16]. Protocol selection depends on research goals, resource
availability, genotypic and environmental variation at a par-
ticular site, and balancing the likelihood of errors due to
under-sampling with eventual diminishing returns of addi-
tional sampling [9]. Field research is a critical component
of this effort and in situmethods employed include monolith
excavation, trench excavation, augers or soil coring, and
minirhizotrons [17].

Monolith excavation involves the excavation of large
blocks of soil, often in a three-dimensional gridded pattern,
over a large area from which roots are typically removed by
washing [18–20]. Monoliths provide rich data but are very
time consuming and destructive, hence, few samples are
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generally obtained, which means variation across a field and
through time can be masked. Trench excavation typically
uses manual shoveling or mechanical excavators to expose
a wall of soil on which a grid can be applied so roots can be
counted or traced [21]. A trench is useful for combining
observations of soil characteristics as well as the RLD profile
but is also time-consuming, destructive, and does not facili-
tate sampling an extensive area. Other techniques such as
the pinboard technique [22], root impact on plane method
[23, 24], and root mapping on three perpendicular planes
[25, 26] have been effectively used to gauge relative root dis-
tribution but are difficult to translate to root length and have
many of the same advantages and disadvantages as soil cor-
ing. Correlation among coring locations as well as among
methods of estimating the RLD profile is not always apparent
[27] nor is it clear which method indicates functionally
important phenotypic differences [28]. Hecht et al. [29]
address this challenge by estimating nodal root angle in bar-
ley with two coring locations using a relatively simple algo-
rithm involving D50, the depth at which 50% of root length
is found. Miguel et al. [30] used in silico soil coring and were
able to better distinguish shallow and deep-rooted root archi-
tectural phenotypes 15 cm from the plant row, as compared
to 5 cm from the plant row.

Soil coring is commonly used to quantify root distribu-
tion because a greater number of samples can be taken over
an extensive area. A variety of methodologies have been pro-
posed with different size cores [31–34], numbers, and loca-
tions of cores [17, 35], often with decisions based upon
throughput or convenience rather than empirical research.
Oikeh et al. [36] follows Wiesler and Horst [34] in taking
multiple subsamples per plot, using a single core location, rel-
ative to focal plants, and combining subsamples. Böhm [15]
recommends 5 cores per plot. Several authors have observed
significant differences among coring locations in a plot [37–
40]. Bengough et al. [17] calculated the number of replicates
needed to differentiate means 22% different from each other
with 40% CV and indicate 25 replicates would be needed to
have a 50% chance of differentiating means. Morandage
et al. [41] studied variation among techniques using virtual
soil coring, minirhizotrons, and trenching of maize and
wheat RSA and found 10-50 cores would be needed to obtain
a 10% relative standard error but the question remains as to
how well virtual models represent actual variation in the
RLD profile.

Multiple groups have attempted to use monoliths as a
“ground truth” and then used this data to simulate soil coring
in various ways. Gajri et al. [42] compared seven coring loca-
tions against four monoliths in maize (30 cm perpendicular
to row ×22.5 cm parallel to row ×10 cm deep) and recom-
mend a single core location with two to three samples and
four replicates, approximately 10 cm from the plant in-row.
Buczko et al. [43] excavated one monolith composed of
10 cm cubes over an area measuring 70 cm (perpendicular
to plant rows) by 40 cm (parallel to plant rows) by 30 cm
(deep) and compared hypothetical core locations to the
monolith data set. With some reservation, they recommend
taking two cores per plot, one in-row and one between-row,
and applying a 1 : 3 weighting scheme, or taking at least eight

cores per plot [43]. Wu et al. [44] performed monolith exca-
vations of maize root systems, 3D mapped the washed root
system, and then performed simulated soil coring based
upon the excavated root system. They generated an algo-
rithm correcting RLD for coring location involving one or
preferably two cores per plot. A limitation of these
monolith-based approaches is that the low number of sam-
ples may not capture a representative amount of variation.

Noninvasive techniques such as magnetic resonance
imaging (MRI), X-ray computed tomography (CT), and pos-
itron emission tomography (PET) (for a brief description see
[45]) offer nondestructive time-series observations [46–49]
describing the three-dimensional structure of root architec-
ture. However, these methods cannot be used reliably in the
field, and measurements are constrained to relatively small
pots, which introduce artifacts [50]. Other technologies such
as ground-penetrating radar (GPR) are being used in forestry
[51] and have agronomic applications to the coarser roots of
perennial crops such as fruits and tuber crops such as cassava
[52, 53]. Detection of naturally occurring, or added tracers
such as oxygen isotopes, heavy water, or deuterium offer esti-
mates of the depth of resource acquisition [54–56].

The variety of adjustments and algorithms suggested by
the previous work are based on the particular environments
studied. Application of these algorithms to other environ-
ments can be further limited by differences in core location
and row and plant spacing. An extensive comparison of cor-
ing locations was performed by Ordóñez et al. [57], who were
interested in determining a plot-level RLD profile. They com-
pared 4 coring locations and developed a simple weighted
average algorithm that accurately predicts the RLD profile
by adjusting for distance from row. In the end, they suggest
the coring location most, the representative of the plot level
average is 10 cm from the plant row, similarly to other work
[32, 36, 42]. Other work by Ordóñez et al. [58] maps the root
front velocity and maximum depth of maize and soybean
using two core locations per plot.

It is generally accepted that overly simplistic sampling is
prone to error [22, 35, 42], that observed variance in RLD
decreases as sample number increases [33, 34, 59] and that
results can be affected by core location [60]. Identifying an
optimum coring strategy is important and difficult [17].
Complications include environmental variability, genotype
by environment interactions, the inherently plastic nature
of root growth, and the artifacts of any particular protocol.
Designing an efficient sampling protocol requires recogniz-
ing that total variation is composed of (1) systematic varia-
tion related to coring location and root architecture and (2)
random variation related to the dynamic interactions among
the individual, its community, and the pedosphere. Holding
systematic factors constant, even if it produces a known bias
in RLD estimates, may permit better characterization of ran-
dom variation. In this study, we compared an RLD estima-
tion algorithm using Voronoi shapes, which are irregular
polyhedrons defined by the relative proximity of one point
to another, to an unadjusted RLD estimate. We tested both
methods on field studies and used simulated soil coring of
phenotypes with contrasting RLD profiles to identify the
optimum method to estimate whole plot root length, to
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identify optimum coring locations for estimating root length,
and to identify optimum coring locations for detecting differ-
ences between root architectural phenotypes.

2. Methods

2.1. Simulation. Maize and bean root system architectures
with three contrasting root angles were simulated using the
functional-structural model OpenSimRoot [61]. Each simula-
tion consisted of a single plot containing four maize or four
bean plants grown for 40 days under nonlimiting conditions.
The parameter sets for the three simulated phenotypes of
each crop differed only in axial or basal root branching angle,
which was altered for every root class by incrementing Open-
SimRoot’s defaults by 0°, +20°, or+40°, respectively, for shal-
low, intermediate, and deep bean, and by -30°, 0°, and +30°

for maize. Row spacing was 76 cm for both species while in-
row spacing was 10 cm for bean and 23 cm for maize. The
acquisition of 44mm diameter soil cores, which matches
the core diameter used in the field, at 40 days after planting
was simulated by extracting RLD in 10 cm depth increments
at the 6 locations depicted in Figure 1 and at a random loca-
tion that varied in every simulation. Root length from the
entire plot by depth was also extracted in 10 cm depth incre-
ments and divided by soil volume to obtain the whole-plot
root length distribution by depth (RLD) profile. Each pheno-
type was simulated 100 times, with variation between repli-
cates provided by specifying gravitropism, root extension
rate, branching frequency, and root tip deflection as stochas-
tic variables. Full parameterizations and model outputs are
available at Zenodo 10.5281/zenodo.3952179.

2.2. Field Experiment. Maize (Zea mays) inbred line Mo17
and common bean (Phaseolus vulgaris) variety Windbreaker
were grown on a sandy loam soil at the Apache Root Biology
Center (Wilcox, AZ 32.03, -109.69). Soil at this site is a mix of
fluvial and lacustrine sediments from an ancient lakebed
(Lake Cochise) and is classified as a Grabe loam [62]. Agro-
nomic conditions were nonlimiting, and plant growth was
normal in both years. Bean was planted on July 3, 2015,
and maize was planted on June 1, 2015. In 2016, planting
was June 4 for bean and May 25 for maize. In both years,

between-row spacing was 76 cm while in-row spacing was
10 cm for bean and 23 cm for maize.

Stainless steel soil cores (Giddings Equipment Company)
with a 44mm internal diameter and length of 60 cm were
inserted into the soil using dead blow sledgehammers and
removed by hand. Cores were taken July 17-18, 2015, and
July 27-28, 2016, in five locations for bean, six locations for
maize, and with eight replications for each species. The bean
field coring procedure in 2016 omitted location 4 because the
tighter planting density of bean, as compared to maize, and
limitations to perfectly align seed placement across rows
obviated the difference between locations 4 and 5 in bean.
A depiction of core locations is presented in Figure 1. Each
core was taken from a different fully bordered and healthy
plant. Each replication was taken from a different 5m × 5m
area. Cores were stored at 4°C until divided into 10 cm seg-
ments and gently washed by hand using low-pressure water
over a 2mm screen. Roots were stored in 25% alcohol until
imaged using an Epson V700 flatbed scanner at 300 dpi and
analyzed using WinRhizo Pro (Regent Instruments).

On July 26, 2016, 52 days after planting of bean and 62
days after planting for maize, an excavator was used to dig
a trench spanning 5 rows to a depth of 160 cm. The face of
the wall was cut smooth using a hand shovel, and all roots
protruding from the face were cut flush with the wall. Sur-
veyor string was used to create a grid, with each cell measur-
ing 14 cm (x) by 7.6 cm (y). Observations of soil texture and
structure were taken for each grid cell. Soil texture was clas-
sified into categories of loose loam, blocky clay peds, or dense
but penetrable sandy loam. Soil structure was categorized as
either relatively unstructured or as composed of blocky peds.
Low-pressure water was used to gently wash three to five cm
of soil from the trench face and expose roots. Exposed root
were then cut from each cell, placed in 25% alcohol, stored
at 4°C until scanned, and analyzed with WinRhizo as
described above.

2.3. Statistical Analysis. To compare in situ and in silico RLD
estimates derived from different core locations (or subsets
thereof), we utilized a Voronoi diagram of the coring loca-
tions. This divides the plot into irregular polyhedra with
dividing lines having equal proximity to adjacent core loca-
tions. Voronoi areas are an objective metric that by definition
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Figure 1: Top view of coring locations with four maize plants. Yellow circles represent core locations, identified with respect to the focal plant
(green asterisk). Blue circles represent possible alternate placements of coring locations by rotation and/or reflection. The red polygons are the
Voronoi map showing the area estimated by each coring location. Row spacing for both species was 76 cm, in row spacing for bean was 10 cm
and 23 cm for maize. Between row bean coring locations (1, 3, 4) were oriented identically but in row positions (2, 5, 6) were compressed due
to tighter in row planting density of bean.
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adjusts for differences in row and plant spacings. The RLD
profile from individual coring locations was aggregated to
estimate the whole-plot RLD profile by weighting coring
locations based on the Voronoi areas associated with each
coring location. This was based on two assumptions: (1) the
coring locations could be reflected (flipped 180 degrees
across the row and rotated 180 degrees around the focal
plant), so a location 5 cm from the focal plant, in the row,
could equivalently be on either side of the focal plant, (2)
the RLD profile in the area nearer any coring location (its
Voronoi area), or in the Voronoi area of any of the reflections
or rotations of that location, was best represented by that cor-
ing location. Voronoi-adjusted RLD refers to the whole-plot
RLD calculated using the weighted mean of the n coring loca-
tions, with weights representing the relative sizes of the Vor-
onoi areas associated with each coring location.

RLDadj = 〠
n

i=1
RLDi ×wið Þ, ð1Þ

where n is the number of coring locations, RLDi is the
RLD of the ith coring location, and wi is the Voronoi-area
derived weight for the ith coring location. The unweighted
mean of n coring locations was also calculated, since it is
the typical approach, and is termed the unadjusted average.
The reference values for RLD are either the Voronoi-
adjusted RLD or the unadjusted average RLD for all six cor-
ing locations.

To confirm that the simulated phenotypes of each crop
are different by depth or not, a two-way ANOVA was con-
ducted on the whole-plot average. The model included the
main effects of phenotype, depth, and interaction between
phenotype and depth. ANOVA results were followed by
Tukey honest significant differences (HSD) test by depth.
The same ANOVA procedure was repeated using the Voro-
noi weighted average.

To determine which method of estimating the RLD pro-
file best estimated true whole-plot RLD, we compared both
the unadjusted mean of all six cores and the Voronoi-
adjusted method against the whole-plot RLD using Two
one-sided T-test (TOST) analysis, which is an equivalence
test of whether an observation falls within defined bounds.
Tests were conducted by phenotype and by depth among
the actual whole-plot average, the unadjusted mean of the
six core locations, and the Voronoi-adjusted mean of the 6
core locations. When subsets of the six coring locations are
used to estimate the whole-plot RLD profile, Voronoi areas
were calculated for only the core locations being used. Equiv-
alence was declared if the p value was less than 0.05. An R
script was developed to automate this data processing and
includes the ability to calculate the Voronoi-adjusted RLD
profile as well as the unadjusted RLD profile for all subsets
of core locations. It is publicly available on Zenodo at 10
.5281/zenodo.3952179.

The depth above which 50% and 95% of roots are found
is a univariate metric used to gauge rooting depth. In this
method, the cumulative sums of root length per soil core seg-
ment, from zero to sixty in ten-centimeter increments, are

used to calculate the depth at which the give percentage of
roots is reached [63]. It can also be calculated by combining
core segments of the same depth from different locations or
calculated based on the actual whole-plot RLD profile in
the case of simulations.

To understand how sampling location affects the ability
to detect phenotype differences in rooting depth, we per-
formed a resampling analysis. For each simulated core, we
computed univariate depth metrics (D50, D80, D90, D95; the
depth above which 50%, 80%, etc. of roots were located).
We then repeatedly sampled from our universe of model out-
puts to select sets of 2-20 simulated cores from each sampling
location and recorded whether one-way ANOVA found sig-
nificant differences (p < 0:05) in each depth metric among
the three phenotypes. We performed 2000 replicates of this
whole procedure for each sample size and considered the
proportion of resamples producing significant ANOVAs to
be an indicator of how reliably cores from that location
would detect differences in root depth.

Multivariate quadratic discriminant analysis (QDA) (in
R Package MASS) was used to identify a coring location(s)
that best distinguished the OpenSimRoot generated root
angle phenotypes (shallow, intermediate, and deep) for each
crop. Equal proportion of all phenotypes was assumed. QDA
was selected over linear discriminant analysis (LDA) because
QDA allows for different variance structures among classes
(phenotypes in this case) while LDA requires equal variance.
QDA calculates quadratic score functions unique to each
phenotype, which each has its own mean vectors and
variance-covariance matrices. A QDA decision rule (equa-
tion below) is applied to classify new samples from the test
set among the different phenotypes, and a new sample is

assigned to a phenotype with the largest Ŝ
Q
i ðxÞ score.

Ŝ
Q
i xð Þ = −

1
2 log Sij j − 1

2 x − xið Þ′ S−1i x − xið Þ + log pi, ð2Þ

where Ŝ
Q
i ðxÞ is the quadratic discriminant function for x

(sample) in phenotype I, Si is covariance matrix of ith pheno-
type, �xi is mean vector of ith phenotype, x is a vector for each
location by depth observation, and pi is the probability of i

th

phenotype occurring (0.5 if two phenotypes are to be classi-
fied but 0.33 if three phenotypes are to be classified).

From the 100 simulated root systems of each phenotype,
50 were randomly selected and reserved as a test set. Subse-
quently, multiple random training sets of varying sample
sizes, i.e., 8, 10, 15, 20, 25, 30, 35, 40, 45, and 50 were selected.
Using each of the training sets, the QDA decision rule was
created for each of the coring locations, except for locations
4 and 5 (half-way between rows) because of rank deficiency
for these two coring locations. Rank deficiency, or collinear-
ity among multiple variables, was likely the result of recover-
ing very few or no roots in the shallower soil zones at these
between-row locations. The misclassification error rate and
accuracy for each of the QDA sets were calculated using the
test set and indicate the frequency at which a given pheno-
type is correctly categorized. This procedure was first per-
formed to classify three phenotypes of each crop and then
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on only deep vs. shallow classification for each crop. Manhat-
tan distance (sum of absolute differences in all depths) was
used to compare RLD estimates from single or multiple cor-
ing locations to the reference values.

3. Results

3.1. Root Length Density Profile Estimation. The three RSA
phenotypes generated by OpenSimRoot differed in total root
length by less than 3% (Supplementary Figure 1), but with
contrasting depth distributions. In both maize and bean,
RLDs of all three phenotypes were different from each
other at every depth but one (Tukey HSD p < 0:05;
Figure 2), with the sole exception that deep and
intermediate bean were not distinguishable from each other
in the 30-40 cm layer. ANOVA was also used to analyze the
Voronoi-adjusted RLD profile for the three simulated root
phenotypes, based upon the six coring locations. Significant
differences in Voronoi-adjusted RLD were found among all
three maize phenotypes in the 0-10 and 20-30 cm layers
and between two maize phenotypes in the 10-20, 30-40, 40-
50, and 50-60 cm layers but only at the 0-10 cm layer in
bean (Figure 2).

To determine which method of estimating RLD from
cores came closest to the true whole-plot value in silico, the
unadjusted mean of all six cores were compared to against
the Voronoi-adjusted method using a Two one-sided T-test
(TOST) analysis for each phenotype. Both the unadjusted
and Voronoi methods generally overestimated shallow RLD
(Figure 3), but the Voronoi-adjusted method was not statisti-
cally different from the actual value in 25 of 36 cases, while
the unadjusted method was not different from the actual
value in only 8 of 36 cases. Deep phenotypes of both species
showed the poorest agreement between estimated and actual
RLD profiles.

The whole-plot root length density (cm root cm-3 soil)
(RLD) and Voronoi-adjusted whole-plot RLD of 100 replica-
tions of three simulated bean and maize phenotypes were
compared to individual and combined coring locations.
While location 3 (between row, 5 cm from plant base) was
not always the best estimator of whole-plot RLD, it was a
consistently good estimator across all phenotypes and species
(Figures 4 and 5). Combinations of two coring locations
reduce the difference between estimated RLD and actual
RLD and reduce the variance of estimates, but the best com-
bination varies by phenotype and species (Figures 4 and 5).
Comparison of Voronoi-adjusted estimates of whole-plot
RLD to individual and combined soil coring locations also
highlights location 3 as a good estimator (Figure 5).

For the field sampling, estimated whole-plot RLD from
the two seasons of soil coring and one season of trench exca-
vation was compared to individual and combined soil coring
location estimates using the Manhattan distances between
actual and estimated RLD. For maize, location 3 was the best
single estimator of Voronoi-adjusted whole-plot RLD in
2015 and 2016 as well as trench RLD (Figures 6 and 7). Sta-
tistical testing is limited by having only one trench per spe-
cies. Combining locations improved estimates of whole-plot
RLD but ideal core combinations were not consistent across

seasons nor method (Voronoi-adjusted, trench). For bean,
single locations 4 (halfway between plants in neighboring
rows) and 1 (between row, next to plant base) were best in
2015, while in 2016, locations 2 (halfway between plants in
a row) and 1 gave the better estimates (Figure 6). Combining
locations reduced the Manhattan distance between estimates
of whole-plot RLD, particularly when pairing a between-row
location with an in-row location (Figure 6). Comparing esti-
mates of RLD from individual core locations to the trench
estimate of whole-plot RLD indicates mid-row locations 4
(halfway between plants in neighboring rows) and 5 (equidis-
tant from 4 plants in 2 rows) were more accurate for bean,
while locations 3 and 5 were more accurate for maize
(Figure 7).

TOST analysis was used to identify the coring location
that best estimates the whole-plot RLD profile and the
Voronoi-adjusted RLD profile (Figure 8). As gauged by the
number of times TOST analysis revealed significant similar-
ities between estimation methods, location 3 was closest to
the whole-plot RLD profile for the deep and intermediate
phenotypes. The shallow maize phenotype was best esti-
mated by using locations 6 (next to plant, in row) or 3, and
the shallow bean phenotype was best estimated using loca-
tions 5 or 4. However, maize location 6 greatly overestimated
shallow RLD, and bean locations 5 and 4 significantly under-
estimated shallow RLD.

3.2. Phenotypic Differentiation. When comparing univariate
metrics of relative rooting depth, the largest differences
between RSA phenotypes were seen at location 2 for maize
(Supplementary Figures 2 and 3) and for bean at locations
4 and 5, followed by random core placement
(Supplementary Figure 3). Differences between phenotypes
were detected more reliably by D50 than by D95 at most
coring locations (Supplementary Figure 3), possibly because
the 60 cm coring depth imposed a limit on variation in
observed D95. However, all depth indexes were able to
differentiate maize RSAs in ~60% of cases with 5
replications at location 2, and D50 reached ~70% reliability
with 5 replications at locations 1 and 6. Bean RSAs were
differentiated by D50 in ~70% of cases at location 5 with
five replications (Supplementary Figure 3), while at
locations 1, 2, and 6, no depth metric was able to
differentiate in more than ~30% of cases even with as many
as 20 replications.

The multivariate quadratic discriminant analysis sup-
ported the finding that some coring locations are better able
to distinguish simulated phenotypes than others. For classify-
ing three phenotypes, location 3 was the best for bean with
~70% accuracy, and location 6 was superior for maize with
~85% accuracy (Figure 9 and Table 1). Accuracy, equivalent
to low misclassification error rate, improves if only shallow
and deep phenotypes are considered, to ~95% at location 3
for bean and~95% at location 6 or 1 for maize (Figure 9
and Table 1). Pairs of coring locations were tested, and the
best subset is presented in Table 1. Pairs of coring locations
did not improve the misclassification error rate, defined as
accuracy subtracted from the true value, between two com-
mon bean phenotypes but did slightly improve the
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misclassification error rate among three bean phenotypes
from 0.36 to 0.34 (Table 1). The misclassification error rate
among three maize phenotypes improved from 0.20 to 0.14
by adding another core, and from 0.05 to 0.02 between two
maize phenotypes by adding another core.

3.3. Metrics of Variation. In order to translate observations
based on simulations to the field, where it is impossible to

efficiently quantify whole-plot root length density, we com-
pared individual and paired core locations to the estimated
whole-plot RLD profile using two techniques; the Voronoi-
adjusted algorithm involving all six soil coring locations
and by the trench-derived RLD profile. Metrics of variation
among locations and among replicates were large in silico
(Supplementary Figure 4) as well as in the field where we
also observed large variation by year (Supplementary
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Figure 5). Some core locations were more prone to variation
than others (Supplementary Figure 6). The RLD profile in
2016 was markedly different than in 2015 for both maize

and bean and 2016 root length in the 10-20 zone was
reduced by half and more than half at 0-10 cm
(Supplementary Figure 6). Significant variation in the RLD
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profile was visible across the columns in the bean trench and
seemed to be associated with a heterogeneously compacted
zone.

We identified core location 3 as providing reasonably
good estimates of the Voronoi-derived RLD profile in 2015
for both maize and bean, as gauged by the number of depths
at which estimates were equivalent to the Voronoi average.
However, in 2016 where less RL was recovered and data
appears noisier, location 1 was better for bean, and locations
2 and 5 provided better estimates for maize (Figure 10). The
Voronoi-adjusted average reported less RLD in shallow
zones than did Voronoi estimates for maize, but for bean,
the trench reported greater RLD in shallow zones than did
Voronoi (Figure 10).

4. Discussion

Our goal was to balance intensive sampling requirements
with limited resources and to cooptimize both detection of
differences in whole-plot root length and RLD depth profile
and categorization of functionally different RSA phenotypes.
To this end, we used simulations to develop a soil coring pro-
tocol that requires as few cores as possible while enabling
estimation of whole-plot RLD, RLD profile, and detection
of whether RSA is shallow, intermediate, or deep. We were
also able to determine that while D50 is better than D95 at dif-
ferentiating phenotypes, quadratic discriminant analysis has
the advantage of including the whole depth profile in a mul-
tivariate analysis.

4.1. Recommendation. Simulations suggest location 3
(between row, 5 cm from plant base) for both bean and maize
best estimate whole-plot RLD (Figures 4 and 5) and that the
whole-plot RLD profile is best estimated for the majority of
phenotypes at location 3 (Figure 8). Soil core resampling
and calculation of D50 and D95 of simulated deep, intermedi-
ate, and shallow phenotypes suggests D50 is a better metric
than D95 for distinguishing RSA phenotypes (Supplementary
Figure 6). This is likely due to larger phenotypic differences at
D50 than D95 (Supplementary Figures 7 and 8). Quadratic
discriminant analysis indicated location 3 for bean and
location 6 (in row, next to plant base) for maize are best at
being able to differentiate deep, intermediate, and shallow
RSA (Figure 9). Quadratic discriminant analysis indicates
20 replications at location 3 for bean, and 10 replications at
location 6 for maize, provide approximately 70% RSA
phenotype categorization accuracy (Figure 9).

4.2. Variation Is Composed of Systemic and Random Factors.
Because the plants simulated by OpenSimRoot were effec-
tively invariant in overall root length (Supplementary
Figure 1), all between-replicate variation in the root length
seen at a given coring location (Supplementary Figure 2)
was driven solely by fine-scale local variation in the rate,
direction, and tortuosity of the growth of individual
simulated root axes. Therefore, these simulations should be
considered as a best-case scenario; as is clear from
comparing the variance of simulated cores (Figure 6) to
that of field data (Figure 8). These simulations did not
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Table 1: Quadratic discriminant analysis showing the misclassification rate of whole-plot RLD profiles for simulated deep, intermediate, and
shallow phenotypes by different coring locations and combinations of locations. Only locations or combinations of coring locations with the
lowest misclassification error rates are displayed. SE refers to standard error.

Coring
location

Misclassification rate 3 maize
phenotypes

Misclassification rate 3 bean
phenotypes

Misclassification rate 2 maize
phenotypes

Misclassification rate 2 bean
phenotypes

1 0.31 (SE = 0:002) 0.51 (SE = 0:001) 0.07 (SE = 0:002) 0.32 (SE = 0:002)
2 0.37 (SE = 0:001) 0.48 (SE = 0:002) 0.11 (SE = 0:002) 0.26 (SE = 0:003)
3 0.47 (SE = 0:002) 0.36 (SE = 0:003) 0.25 (SE = 0:003) 0.1 (SE = 0:002)
6 0.24 (SE = 0:001) 0.57 (SE = 0:002) 0.13 (SE = 0:003) 0.43 (SE = 0:005)
6 and 1 0.23 (SE = 0:003) 0.07 (SE = 0:004)
6 and 2 0.18 (SE = 0:001) 0.07 (SE = 0:003)
6 and 3 0.25 (SE = 0:001) 0.1 (SE = 0:003)
3 and 1 0.38 (SE = 0:002) 0.12 (SE = 0:003)
3 and 2 0.39 (SE = 0:003) 0.15 (SE = 0:004)
3 and 6 0.36 (SE = 0:003) 0.13 (SE = 0:003)
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account for additional real-world sources of variation such as
heterogeneity in the growth environment, imprecision in
core placement or depth partitioning, or variation in whole-
plant growth rate.

While variation between field seasons is significant and
results are variable, results indicate that location 1 (between
row, next to plant) for bean and 3 (between row, 5 cm from
plant base) for maize best approximate Voronoi-adjusted
RLD (Figure 6). The closest RLD values to trench estimates
for maize come from locations 3 or 5 (between row, 5 cm
from plant base and halfway between rows, respectively)
and location 4 or 5 (halfway between row locations) for bean
(Figure 7). Field studies indicate pairs of core locations can
improve estimates of RLD and the RLD profile (Figures 4–
7). Simulations also show pairs of coring locations slightly
improve misclassification error rates (Table 1).

The lack of congruity among these recommendations
begs the question as to the source of the variation. We
propose firstly that variation is real and worthy of study
[17] and that a new perspective may be useful to reorient
our approach. A rhizo canopy arises from the dynamic
interactions among an individual plant, its neighbors,
and the pedosphere, like a forest canopy expands dynam-
ically in time and space. Even leaf area development and
canopy closure of row crops, like soybean, is a complex
process with incompletely understood effects of environ-
ment, neighbors, and management [64, 65]. Analogous
attempts to characterize dynamic heterogeneity of tree
branch structure [66], a forest canopy [67, 68], a city sky-
line [69], or traces of even historic human land use [70],
have traditionally relied on transects, but technologies
such as light detection and ranging (LiDAR) have
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dramatically increased coverage, resolution, and changed
the way these processes are conceptualized ([71]; Ander-
son et al., 2006). As the applications of LiDAR are show-
ing, a single small transect cannot be expected to capture
all variation of a forest canopy or city skyline. Neither
should a small number of trenches, monoliths, or cores
be expected to capture all variation in a rhizo canopy.
Regardless, variation in root distribution profile at the
plant, plot, and field level may be an adaptive trait [72].
This variation may be better categorized as phenotypic
plasticity ([73–75]: [76]) and flexibility, which should be
considered on at least the whole organism level rather
than the single trait level [77].

In spite of variation and its potential utility, we can how-
ever highlight that our field and simulation studies suggest
location 3 is closest to whole-plot, Voronoi-adjusted and
trench derived whole-plot RLD profile at the shallowest zone,
which is an important zone for distinguishing phenotypes.
We view this as the most important objective because this
may enable breeders to identify functional differences in
rooting depth. Although sampling at fixed times and loca-
tions can easily give a snapshot, albeit biased, of a spatiotem-
porally complex process, breeders interested in selecting for
particular phenotypes often do not require absolute accuracy,
but simple detection of relative differences (e.g., phenotype or
environment).

In the context of crop breeding, differentiating pheno-
types is more important than estimating whole-plot RLD
(Figures 4 and 5) or estimating D50 or D95 phenotypes (Sup-
plementary Figure 3). The between-row locations (4 and 5)
may be good estimators of whole-plot RLD because
locations closer to plants tend to overestimate whole-plot
RLD. Furthermore, between-row locations underestimate
shallow RLD (Figures 8 and 10, Supplementary Figures 7
and 8), which further reduces their value. However,
accepting bias in comparative measurements does have
hazards: it reduces the value of those measurements to
future researchers and increases the chance of their being
misinterpreted or reused after publication in ways that
ignore the bias [78].

Contrasting results between maize and bean were
expected due to fundamental differences in plant structure
and planting density. Bean is a dicot with more higher-
order laterals that does not usually generate new axial roots
after 2-3 weeks from germination [79]. Maize is a monocot
that generates successive whorls of nodal roots with increas-
ing diameter through at least the silking stage [32]. Differ-
ences between maize and bean root initiation and
secondary thickening result in ecologically significant con-
trasts in exploration strategies which may be involved in
the different results and amount of variation between the spe-
cies. The strategy of bean roots, that initially have small
diameters but can then have secondary growth [80], may rely
more heavily on the exploitation of pores, cracks, and frac-
tures as does soybean [81], rather than penetration of
mechanically impeded soil domains, as maize can [82].
Indeed, it is likely that roots can follow ped structure, frac-
tures, or pores [83–85] to attain greater rooting depth in deep
soil domains [86–91] where the strength required for roots to

deform soil is outside their observed range [87]. These highly
variable factors may be germane to explaining the heteroge-
neous and dynamic nature of root growth in the field.

Multiple studies investigating RLD have peripherally
noted how compacted strata probably affected their results
[32, 37]. Effects of localized impedance on root growth were
evident in the bean trench. Impedance in columns P, Q, and
R may be related to a relative proliferation of roots in col-
umns M and N at the first and second depths, and column
O at second and third depth (Supplementary Figure 9). It
appeared that roots grew around the impeded zone, rather
than through it, and then resumed a downward trajectory.
While it is known that RLD variation can be large in a
small plot and neighbors can have profound effects [92],
the microvariation in the structure and texture of a soil has
not been intensively studied. It is likely that local responses
to microvariation can be complex, multidimensional, and
nonadditive [93, 94]. Recognizing the diversity of soil
conditions and genotype × environment responses, even in
the same genotype and field trial, may lead to identifying
biologically relevant trends or strategies [95].

In contrast to Orndóñez et al. [57] who found no differ-
ences in root length or root mass between two experimental
locations and Liedgens and Richner [96] who found no dif-
ference between RLD across years, Hirte et al. [97], as well
this research, found RLD to be substantially different in two
years and among replications (Supplementary Figures 5 and
6). We speculate that this difference could be due to the
variable soil structure, texture, and bulk density between
the locations. Nevertheless, assuming that a uniform
rooting front exists [58] or that all individuals in a plot are
similar [43, 44, 98] overlooks potentially important
variation among individual plants, locations in the field, or
across more distinct soil types or agroecosystems. It is
unclear if a particular coring location consistently provides
good estimates of RLD, and the RLD profile across
environments and phenotypes. Assumptions of
homogenous root growth are even less likely to be accurate
in more heterogeneous, nutrient-limited, or compacted soils
[27, 34, 89, 90, 99]. Furthermore, root growth plasticity
may be a biologically important trait and has been observed
in response to soil drying [100–102], depth to water table
[103], and nitrogen availability [104].

4.3. Conclusion. We used field and simulation studies to
develop a soil coring protocol that estimates functionally rel-
evant differences in root length distribution in maize and
bean, but in agreement with our hypothesis, also found sig-
nificant variation among phenotypes, replications, and envi-
ronments. Systematic variation, attributable to coring
location and phenotype, can be controlled for, but random
variation arising from phenotypic plasticity, soil heterogene-
ity, and other unknown sources poses a significant challenge.
Recognizing variation as dynamic, natural, and agroecologi-
cally important leads to a novel conceptualization frame-
work, termed the rhizo canopy. A rhizo canopy is the result
of dynamic interactions among an individual plant, its neigh-
bors, and the pedosphere. It is analogous to a diverse forest
canopy that has trees of variable height and is dynamic over
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time. Conceptualizing root length distribution as a spatio-
temporally dynamic rhizo canopy may lead to a more
nuanced perspective of soil exploration, useful to plant
breeders and physiologists.

Abbreviations

ANOVA: One-way analysis of variance
D50: Depth where 50% of root length is found
D95: Depth where 95% of root length is found
P: Phosphorus
RSA: Root system architecture
RLD: Root length density
TOST: Two one-sided T-test.

Data Availability

The field and simulation data, model parameterization, R
package to calculate Voronoi-adjusted root length distribu-
tion, and R scripts used to analyze data are available at
Zenodo (https://doi.org/10.5281/zenodo.3952179).

Additional Points

Highlights. Soil coring and trench excavations in the field and
in silico soil coring of maize and bean were used to identify a
soil coring location 5 cm from the plant base in the between-
row direction, as most robust for estimating root length dis-
tribution. Variation of root length distribution in maize and
bean is attributable to fixed factors such as coring location
and random factors such as location in field and season.
The rhizo canopy concept describes how a root length profile
dynamically arises from the interactions among an individual
plant, its neighbors, and the pedosphere.
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Supplementary Materials

Supplementary Figure 1: distribution of total root length of
the three root system architecture (RSA) phenotypes gener-
ated by OpenSimRoot. Supplementary Figure 2: distribution
of D95 for the different simulated maize phenotypes at the 6
different coring locations. Depth in cm is given on the y axis.
Supplementary Figure 3: resampling of 2,000 simulation
model fits testing the rate at which bean (top) and maize
(bottom) RSA phenotypes are known to be different pass
the 0.05 p value threshold for rejection of equal root length
distribution. Soil core locations are given across the top as
well as random core locations and a monolith (whole-plot).
The rejection rate is on the y axis and number of replications
on the x axis. The depth at which 50%, 80%, 90%, and 95%
(D50, D80, D90, D95) of roots can be found is plotted for each
location and species combination. Supplementary Figure 4:
simulated RLD profile by phenotype (rows) and coring loca-
tion (columns) with average whole-plot RLD profile overlaid
in red on each panel. Supplementary Figure 5: panel A shows
the Voronoi field-derived RLD profile for the 2 years of field
data. Panel B shows the coefficient of variation by year and
depth for the 2 years of field data, 2015 on the left side and
2016 on the right side. Supplementary Figure 6: root length
by depth in 2015 (x axis) and 2016 (y axis) field trials by dif-
ferent locations (numbered) and species. The diagonal
dashed line indicates 1 : 1 equivalence. Supplementary Figure
7: depth above which 50% (D50) of root length is found for
simulated bean (top) and maize (bottom) phenotypes at the
six different coring locations, a random core location, and a
monolith. Y axis is depth and RSA phenotypes are on the x
axis. Colors indicate number of sampling replicates. Supple-
mentary Figure 8: depth above which 95% (D95) of root
length is found for simulated bean (top) and maize (bottom)
phenotypes at the six different coring locations, a random
core location, and a monolith. Y axis is depth and RSA phe-
notypes are on the x axis. Colors indicate number of sam-
pling replicates. Supplementary Figure 9: Heat map on the
top left shows root length density (cmcm-3) and heat map
on the bottom left shows a unitless visual score for fractured-
ness with 2 indicating more fractures. X’s in the top left panel
indicate plant stems. Photo of bean trench wall (right) fol-
lowing washing showing compacted zone in the center of
the photo, cell P2. Additional supplementary materials avail-
able at, https://zenodo.org/record/3952179#.X1iMzWozZTY
contain; data from field and simulation trials on root length
distribution profiles of maize and common bean. Code used
to conduct OpenSimRoot simulations. Code to calculate
Voronoi area adjusted root length. Code to conduct QDA,
and other analysis and plots presented in the manuscript.
Supplementary Table 1: confusion matrix_two phenotypes.
Supplementary material 2. Supplementary material 3.
(Supplementary Materials)
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