000888639 001__ 888639
000888639 005__ 20240610120122.0
000888639 0247_ $$2doi$$a10.1039/D0SM01339K
000888639 0247_ $$2ISSN$$a1744-683X
000888639 0247_ $$2ISSN$$a1744-6848
000888639 0247_ $$2altmetric$$aaltmetric:92238389
000888639 0247_ $$2pmid$$a33078824
000888639 0247_ $$2WOS$$aWOS:000596710100014
000888639 037__ $$aFZJ-2020-05082
000888639 082__ $$a530
000888639 1001_ $$0P:(DE-Juel1)162464$$aRode, Sebastian$$b0$$eCorresponding author
000888639 245__ $$aChiral-filament self-assembly on curved manifolds
000888639 260__ $$aLondon$$bRoyal Soc. of Chemistry$$c2020
000888639 3367_ $$2DRIVER$$aarticle
000888639 3367_ $$2DataCite$$aOutput Types/Journal article
000888639 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1608108001_32472
000888639 3367_ $$2BibTeX$$aARTICLE
000888639 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000888639 3367_ $$00$$2EndNote$$aJournal Article
000888639 500__ $$aKein Post-print vorhanden!
000888639 520__ $$aRod-like and banana-shaped proteins, like BAR-domain proteins and MreB proteins, adsorb on membranes and regulate the membrane curvature. The formation of large filamentous complexes of these proteins plays an important role in cellular processes like membrane trafficking, cytokinesis and cell motion. We propose a simplified model to investigate such curvature-dependent self-assembly processes. Anisotropic building blocks, modeled as trimer molecules, which have a preferred binding site, interact via pair-wise Lennard-Jones potentials. When several trimers assemble, they form an elastic ribbon with an intrinsic curvature and twist, controlled by bending and torsional rigidity. For trimer self-assembly on the curved surface of a cylindrical membrane, this leads to a preferred spatial orientation of the ribbon. We show that these interactions can lead to the formation of helices with several windings around the cylinder. The emerging helix angle and pitch depend on the rigidities and the intrinsic curvature and twist values. In particular, a well-defined and controllable helix angle emerges in the case of equal bending and torsional rigidity. The dynamics of filament growth is characterized by three regimes, in which filament length increases with the power laws tz in time, with z ≃ 3/4, z = 1/2, and z = 0 for short, intermediate, and long times, respectively. A comparison with the solutions of the Smoluchowski aggregation equation allows the identification of the underlying mechanism in the short-time regime as a crossover from size-independent to diffusion-limited aggregation. Thus, helical structures, as often observed in biology, can arise by self-assembly of anisotropic and chiral proteins.
000888639 536__ $$0G:(DE-HGF)POF3-551$$a551 - Functional Macromolecules and Complexes (POF3-551)$$cPOF3-551$$fPOF III$$x0
000888639 588__ $$aDataset connected to CrossRef
000888639 7001_ $$0P:(DE-Juel1)130629$$aElgeti, Jens$$b1
000888639 7001_ $$0P:(DE-Juel1)130665$$aGompper, Gerhard$$b2
000888639 773__ $$0PERI:(DE-600)2191476-X$$a10.1039/D0SM01339K$$gp. 10.1039.D0SM01339K$$n46$$p10.1039.D0SM01339K$$tSoft matter$$v16$$x1744-6848$$y2020
000888639 8564_ $$uhttps://juser.fz-juelich.de/record/888639/files/d0sm01339k-1.pdf$$yRestricted
000888639 909CO $$ooai:juser.fz-juelich.de:888639$$pVDB
000888639 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162464$$aForschungszentrum Jülich$$b0$$kFZJ
000888639 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130629$$aForschungszentrum Jülich$$b1$$kFZJ
000888639 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130665$$aForschungszentrum Jülich$$b2$$kFZJ
000888639 9131_ $$0G:(DE-HGF)POF3-551$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vFunctional Macromolecules and Complexes$$x0
000888639 9141_ $$y2020
000888639 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG$$d2020-09-03$$wger
000888639 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-09-03$$wger
000888639 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2020-09-03$$wger
000888639 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSOFT MATTER : 2018$$d2020-09-03
000888639 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-03
000888639 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-03
000888639 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-03
000888639 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-03
000888639 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-09-03
000888639 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-03
000888639 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-03
000888639 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-09-03
000888639 9201_ $$0I:(DE-Juel1)IBI-5-20200312$$kIBI-5$$lTheoretische Physik der Lebenden Materie$$x0
000888639 980__ $$ajournal
000888639 980__ $$aVDB
000888639 980__ $$aI:(DE-Juel1)IBI-5-20200312
000888639 980__ $$aUNRESTRICTED
000888639 981__ $$aI:(DE-Juel1)IAS-2-20090406