001     888639
005     20240610120122.0
024 7 _ |a 10.1039/D0SM01339K
|2 doi
024 7 _ |a 1744-683X
|2 ISSN
024 7 _ |a 1744-6848
|2 ISSN
024 7 _ |a altmetric:92238389
|2 altmetric
024 7 _ |a 33078824
|2 pmid
024 7 _ |a WOS:000596710100014
|2 WOS
037 _ _ |a FZJ-2020-05082
082 _ _ |a 530
100 1 _ |a Rode, Sebastian
|0 P:(DE-Juel1)162464
|b 0
|e Corresponding author
245 _ _ |a Chiral-filament self-assembly on curved manifolds
260 _ _ |a London
|c 2020
|b Royal Soc. of Chemistry
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1608108001_32472
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a Kein Post-print vorhanden!
520 _ _ |a Rod-like and banana-shaped proteins, like BAR-domain proteins and MreB proteins, adsorb on membranes and regulate the membrane curvature. The formation of large filamentous complexes of these proteins plays an important role in cellular processes like membrane trafficking, cytokinesis and cell motion. We propose a simplified model to investigate such curvature-dependent self-assembly processes. Anisotropic building blocks, modeled as trimer molecules, which have a preferred binding site, interact via pair-wise Lennard-Jones potentials. When several trimers assemble, they form an elastic ribbon with an intrinsic curvature and twist, controlled by bending and torsional rigidity. For trimer self-assembly on the curved surface of a cylindrical membrane, this leads to a preferred spatial orientation of the ribbon. We show that these interactions can lead to the formation of helices with several windings around the cylinder. The emerging helix angle and pitch depend on the rigidities and the intrinsic curvature and twist values. In particular, a well-defined and controllable helix angle emerges in the case of equal bending and torsional rigidity. The dynamics of filament growth is characterized by three regimes, in which filament length increases with the power laws tz in time, with z ≃ 3/4, z = 1/2, and z = 0 for short, intermediate, and long times, respectively. A comparison with the solutions of the Smoluchowski aggregation equation allows the identification of the underlying mechanism in the short-time regime as a crossover from size-independent to diffusion-limited aggregation. Thus, helical structures, as often observed in biology, can arise by self-assembly of anisotropic and chiral proteins.
536 _ _ |a 551 - Functional Macromolecules and Complexes (POF3-551)
|0 G:(DE-HGF)POF3-551
|c POF3-551
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Elgeti, Jens
|0 P:(DE-Juel1)130629
|b 1
700 1 _ |a Gompper, Gerhard
|0 P:(DE-Juel1)130665
|b 2
773 _ _ |a 10.1039/D0SM01339K
|g p. 10.1039.D0SM01339K
|0 PERI:(DE-600)2191476-X
|n 46
|p 10.1039.D0SM01339K
|t Soft matter
|v 16
|y 2020
|x 1744-6848
856 4 _ |u https://juser.fz-juelich.de/record/888639/files/d0sm01339k-1.pdf
|y Restricted
909 C O |o oai:juser.fz-juelich.de:888639
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)162464
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)130629
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)130665
913 1 _ |a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-551
|2 G:(DE-HGF)POF3-500
|v Functional Macromolecules and Complexes
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2020
915 _ _ |a Allianz-Lizenz / DFG
|0 StatID:(DE-HGF)0400
|2 StatID
|d 2020-09-03
|w ger
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2020-09-03
|w ger
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2020-09-03
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SOFT MATTER : 2018
|d 2020-09-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-09-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-09-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-09-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-09-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-09-03
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-09-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-09-03
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-09-03
920 1 _ |0 I:(DE-Juel1)IBI-5-20200312
|k IBI-5
|l Theoretische Physik der Lebenden Materie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBI-5-20200312
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IAS-2-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21