001     888647
005     20240610121041.0
024 7 _ |a 10.1103/PhysRevC.102.054332
|2 doi
024 7 _ |a 0556-2813
|2 ISSN
024 7 _ |a 1089-490X
|2 ISSN
024 7 _ |a 1538-4497
|2 ISSN
024 7 _ |a 2469-9985
|2 ISSN
024 7 _ |a 2469-9993
|2 ISSN
024 7 _ |a 2470-0002
|2 ISSN
024 7 _ |a 2128/26510
|2 Handle
024 7 _ |a WOS:000595152800004
|2 WOS
037 _ _ |a FZJ-2020-05090
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Speth, Josef
|0 P:(DE-Juel1)131339
|b 0
245 _ _ |a Generalized Skyrme random-phase approximation for nucler resonances: Different trends for electric and magnetic modes
260 _ _ |a Woodbury, NY
|c 2020
|b Inst.
264 _ 1 |3 online
|2 Crossref
|b American Physical Society (APS)
|c 2020-11-30
264 _ 1 |3 print
|2 Crossref
|b American Physical Society (APS)
|c 2020-11-01
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1607700203_19866
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We discuss major differences between electric and magnetic excitations in nuclei appearing in self-consistent calculations based on Skyrme energy-density functionals (EDFs). For this we calculate collective low- and high-lying electric and magnetic excitations in 208Pb within a self-consistent Skyrme EDF approach using the random-phase approximation (RPA) and a more sophisticated particle-hole plus phonon-coupling model, coined the time-blocking approximation (TBA). Tools of analysis are Landau-Migdal parameters for bulk properties and the RPA and TBA results for finite nuclei. We show that the interplay between the effective mass and the effective particle-hole interaction, well known in the Landau-Migdal theory, renders the final results rather independent of the effective mass by virtue of the “backflow effect.” It explains the success of self-consistent calculations of electric transitions in such approaches. This effect, however, is absent in the magnetic case and leads to higher fluctuations in the results. It calls for further developments of the Skyrme functional in the spin channel.
536 _ _ |a 511 - Computational Science and Mathematical Methods (POF3-511)
|0 G:(DE-HGF)POF3-511
|c POF3-511
|f POF III
|x 0
542 _ _ |i 2020-11-30
|2 Crossref
|u https://link.aps.org/licenses/aps-default-license
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Reinhard, P. G.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Tselyaev, Victor
|0 P:(DE-Juel1)131357
|b 2
|e Corresponding author
700 1 _ |a Lyutorovich, Nikolay
|0 P:(DE-Juel1)131244
|b 3
773 1 8 |a 10.1103/physrevc.102.054332
|b American Physical Society (APS)
|d 2020-11-30
|n 5
|p 054332
|3 journal-article
|2 Crossref
|t Physical Review C
|v 102
|y 2020
|x 2469-9985
773 _ _ |a 10.1103/PhysRevC.102.054332
|g Vol. 102, no. 5, p. 054332
|0 PERI:(DE-600)2844098-5
|n 5
|p 054332
|t Physical review / C
|v 102
|y 2020
|x 2469-9985
856 4 _ |u https://juser.fz-juelich.de/record/888647/files/PhysRevC.102.054332.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:888647
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)131339
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)131357
913 1 _ |a DE-HGF
|b Key Technologies
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|2 G:(DE-HGF)POF3-500
|v Computational Science and Mathematical Methods
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|l Supercomputing & Big Data
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-10-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-10-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1230
|2 StatID
|b Current Contents - Electronics and Telecommunications Collection
|d 2020-10-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-10-13
915 _ _ |a American Physical Society Transfer of Copyright Agreement
|0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-10-13
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-10-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-10-13
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-10-13
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-10-13
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS REV C : 2018
|d 2020-10-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-10-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-10-13
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IAS-4-20090406
|k IAS-4
|l Theorie der Starken Wechselwirkung
|x 0
920 1 _ |0 I:(DE-Juel1)IKP-3-20111104
|k IKP-3
|l Theorie der starken Wechselwirkung
|x 1
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IAS-4-20090406
980 _ _ |a I:(DE-Juel1)IKP-3-20111104
981 _ _ |a I:(DE-Juel1)IAS-4-20090406
999 C 5 |a 10.1103/RevModPhys.75.121
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevC.80.031302
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/0954-3899/37/6/064034
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 A. B. Migdal
|y 1967
|2 Crossref
|t Theory of Finite Fermi Systems and Application to Atomic Nuclei
|o A. B. Migdal Theory of Finite Fermi Systems and Application to Atomic Nuclei 1967
999 C 5 |1 L. D. Landau
|y 1980
|2 Crossref
|t Course of Theoretical Physics 9—Statistical Physics
|o L. D. Landau Course of Theoretical Physics 9—Statistical Physics 1980
999 C 5 |a 10.1007/978-3-642-61852-9
|1 P. Ring
|2 Crossref
|9 -- missing cx lookup --
|y 1980
999 C 5 |a 10.1103/PhysRevC.75.024306
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevC.94.034306
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/0370-1573(77)90042-4
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/0029-5582(58)90345-6
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevC.5.1472
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevC.11.1031
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/0375-9474(76)90551-0
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevC.5.626
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/0375-9474(82)90403-1
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevC.79.034310
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/0954-3899/42/3/034026
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 J. Bardin
|y 1961
|2 Crossref
|t Progress in Low Temperature Physics
|o J. Bardin Progress in Low Temperature Physics 1961
999 C 5 |a 10.1016/0370-1573(75)90003-4
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/0375-9474(80)90618-1
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1080/14786435608238187
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/0370-2693(81)90646-8
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/0370-2693(73)90001-4
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/0375-9474(80)90660-0
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1007/BF01303822
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1007/s002180050229
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevC.94.044306
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevC.99.064329
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/0370-2693(88)90897-0
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/0370-2693(89)91106-4
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevC.41.1243
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/0370-2693(90)91069-N
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevC.42.1461
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevC.54.690
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/0954-3899/38/3/033101
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1002/andp.19925040805
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.5506/APhysPolBSupp.12.689
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 D. Pines
|y 1966
|2 Crossref
|t The Theory of Quantum Liquids
|o D. Pines The Theory of Quantum Liquids 1966
999 C 5 |a 10.1103/PhysRevC.34.746
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 L. D. Landau
|y 1957
|2 Crossref
|o L. D. Landau 1957
999 C 5 |1 L. D. Landau
|y 1957
|2 Crossref
|o L. D. Landau 1957
999 C 5 |1 L. D. Landau
|y 1959
|2 Crossref
|o L. D. Landau 1959
999 C 5 |a 10.1016/j.nuclphysa.2014.03.023
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.109.092502
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/0034-4885/52/4/002
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1140/epja/i2010-11045-6
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1142/1126
|1 J. Speth
|2 Crossref
|9 -- missing cx lookup --
|y 1991
999 C 5 |a 10.1103/PhysRevC.96.024312
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevC.97.044308
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevC.85.064606
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/S0375-9474(97)00596-4
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevC.66.014303
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevC.76.014312
|9 -- missing cx lookup --
|2 Crossref


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21