000888649 001__ 888649
000888649 005__ 20240711092306.0
000888649 0247_ $$2doi$$a10.1103/PhysRevMaterials.4.033802
000888649 0247_ $$2ISSN$$a2475-9953
000888649 0247_ $$2ISSN$$a2476-0455
000888649 0247_ $$2Handle$$a2128/26450
000888649 0247_ $$2WOS$$aWOS:000521131800002
000888649 037__ $$aFZJ-2020-05092
000888649 082__ $$a530
000888649 1001_ $$0P:(DE-Juel1)173887$$aWang, Kai$$b0$$ufzj
000888649 245__ $$aModeling of dendritic growth using a quantitative nondiagonal phase field model
000888649 260__ $$aCollege Park, MD$$bAPS$$c2020
000888649 3367_ $$2DRIVER$$aarticle
000888649 3367_ $$2DataCite$$aOutput Types/Journal article
000888649 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1607522424_10431
000888649 3367_ $$2BibTeX$$aARTICLE
000888649 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000888649 3367_ $$00$$2EndNote$$aJournal Article
000888649 520__ $$aThe phase field method has emerged as the tool of choice to simulate complex pattern formation processes in various domains of materials sciences. For the phase field model to faithfully reproduce the dynamics of a prescribed free-boundary problem with transport equations in the bulk and boundary conditions at the interfaces, the so-called thin-interface limit should be performed. For a phase transformation driven by diffusion, the kinetic cross-coupling between the phase field and the diffusion field has recently been introduced, allowing a control on interface boundary conditions in the general case where the diffusivity in the growing phase DS neither vanishes (one-sided model) nor equals the one of the disappearing phase DL (symmetric model). Here, we investigate the capabilities of this nondiagonal phase field model in the case of two-dimensional dendritic growth. We benchmark our model with Green's function calculations (sharp-interface model) for the symmetric and one-sided cases, and our results for arbitrary DS/DL allow us to propose a generalization of the theory by Barbieri and Langer [Phys. Rev. A 39, 5314 (1989)] for finite anisotropy of interface energy. We also perform simulations that evidence the necessity of introducing the kinetic cross-coupling and of eliminating surface diffusion. Our work opens up the way for quantitative phase field simulations of phase transformations with diffusion in the growing phases playing an important role in the pattern and velocity selections.
000888649 536__ $$0G:(DE-HGF)POF3-144$$a144 - Controlling Collective States (POF3-144)$$cPOF3-144$$fPOF III$$x0
000888649 588__ $$aDataset connected to CrossRef
000888649 7001_ $$0P:(DE-HGF)0$$aBoussinot, Guillaume$$b1
000888649 7001_ $$0P:(DE-HGF)0$$aHüter, Claas$$b2
000888649 7001_ $$0P:(DE-Juel1)130567$$aBrener, Efim A.$$b3$$eCorresponding author
000888649 7001_ $$0P:(DE-Juel1)130979$$aSpatschek, Robert$$b4
000888649 773__ $$0PERI:(DE-600)2898355-5$$a10.1103/PhysRevMaterials.4.033802$$gVol. 4, no. 3, p. 033802$$n3$$p033802$$tPhysical review materials$$v4$$x2475-9953$$y2020
000888649 8564_ $$uhttps://juser.fz-juelich.de/record/888649/files/PhysRevMaterials.4.033802.pdf$$yOpenAccess
000888649 909CO $$ooai:juser.fz-juelich.de:888649$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000888649 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173887$$aForschungszentrum Jülich$$b0$$kFZJ
000888649 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130567$$aForschungszentrum Jülich$$b3$$kFZJ
000888649 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130979$$aForschungszentrum Jülich$$b4$$kFZJ
000888649 9131_ $$0G:(DE-HGF)POF3-144$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000888649 9141_ $$y2020
000888649 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-05
000888649 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-05
000888649 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000888649 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV MATER : 2018$$d2020-09-05
000888649 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-05
000888649 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-05
000888649 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-09-05
000888649 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000888649 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-09-05
000888649 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-05
000888649 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-05
000888649 920__ $$lyes
000888649 9201_ $$0I:(DE-Juel1)IEK-2-20101013$$kIEK-2$$lWerkstoffstruktur und -eigenschaften$$x0
000888649 9201_ $$0I:(DE-Juel1)PGI-2-20110106$$kPGI-2$$lTheoretische Nanoelektronik$$x1
000888649 9801_ $$aFullTexts
000888649 980__ $$ajournal
000888649 980__ $$aVDB
000888649 980__ $$aUNRESTRICTED
000888649 980__ $$aI:(DE-Juel1)IEK-2-20101013
000888649 980__ $$aI:(DE-Juel1)PGI-2-20110106
000888649 981__ $$aI:(DE-Juel1)IMD-1-20101013