001     888649
005     20240711092306.0
024 7 _ |a 10.1103/PhysRevMaterials.4.033802
|2 doi
024 7 _ |a 2475-9953
|2 ISSN
024 7 _ |a 2476-0455
|2 ISSN
024 7 _ |a 2128/26450
|2 Handle
024 7 _ |a WOS:000521131800002
|2 WOS
037 _ _ |a FZJ-2020-05092
082 _ _ |a 530
100 1 _ |a Wang, Kai
|0 P:(DE-Juel1)173887
|b 0
|u fzj
245 _ _ |a Modeling of dendritic growth using a quantitative nondiagonal phase field model
260 _ _ |a College Park, MD
|c 2020
|b APS
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1607522424_10431
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The phase field method has emerged as the tool of choice to simulate complex pattern formation processes in various domains of materials sciences. For the phase field model to faithfully reproduce the dynamics of a prescribed free-boundary problem with transport equations in the bulk and boundary conditions at the interfaces, the so-called thin-interface limit should be performed. For a phase transformation driven by diffusion, the kinetic cross-coupling between the phase field and the diffusion field has recently been introduced, allowing a control on interface boundary conditions in the general case where the diffusivity in the growing phase DS neither vanishes (one-sided model) nor equals the one of the disappearing phase DL (symmetric model). Here, we investigate the capabilities of this nondiagonal phase field model in the case of two-dimensional dendritic growth. We benchmark our model with Green's function calculations (sharp-interface model) for the symmetric and one-sided cases, and our results for arbitrary DS/DL allow us to propose a generalization of the theory by Barbieri and Langer [Phys. Rev. A 39, 5314 (1989)] for finite anisotropy of interface energy. We also perform simulations that evidence the necessity of introducing the kinetic cross-coupling and of eliminating surface diffusion. Our work opens up the way for quantitative phase field simulations of phase transformations with diffusion in the growing phases playing an important role in the pattern and velocity selections.
536 _ _ |a 144 - Controlling Collective States (POF3-144)
|0 G:(DE-HGF)POF3-144
|c POF3-144
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Boussinot, Guillaume
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Hüter, Claas
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Brener, Efim A.
|0 P:(DE-Juel1)130567
|b 3
|e Corresponding author
700 1 _ |a Spatschek, Robert
|0 P:(DE-Juel1)130979
|b 4
773 _ _ |a 10.1103/PhysRevMaterials.4.033802
|g Vol. 4, no. 3, p. 033802
|0 PERI:(DE-600)2898355-5
|n 3
|p 033802
|t Physical review materials
|v 4
|y 2020
|x 2475-9953
856 4 _ |u https://juser.fz-juelich.de/record/888649/files/PhysRevMaterials.4.033802.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:888649
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)173887
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)130567
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)130979
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-144
|2 G:(DE-HGF)POF3-100
|v Controlling Collective States
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-09-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-09-05
915 _ _ |a American Physical Society Transfer of Copyright Agreement
|0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS REV MATER : 2018
|d 2020-09-05
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-09-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-09-05
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-09-05
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-09-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-09-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-09-05
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-2-20101013
|k IEK-2
|l Werkstoffstruktur und -eigenschaften
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-2-20110106
|k PGI-2
|l Theoretische Nanoelektronik
|x 1
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-2-20101013
980 _ _ |a I:(DE-Juel1)PGI-2-20110106
981 _ _ |a I:(DE-Juel1)IMD-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21