000888651 001__ 888651
000888651 005__ 20210130011052.0
000888651 0247_ $$2doi$$a10.1088/1367-2630/ab84b3
000888651 0247_ $$2Handle$$a2128/26452
000888651 0247_ $$2WOS$$aWOS:000538446700001
000888651 037__ $$aFZJ-2020-05094
000888651 082__ $$a530
000888651 1001_ $$00000-0001-7853-9581$$aAmaro, David$$b0
000888651 245__ $$aScalable characterization of localizable entanglement in noisy topological quantum codes
000888651 260__ $$a[London]$$bIOP$$c2020
000888651 3367_ $$2DRIVER$$aarticle
000888651 3367_ $$2DataCite$$aOutput Types/Journal article
000888651 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1607523888_30926
000888651 3367_ $$2BibTeX$$aARTICLE
000888651 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000888651 3367_ $$00$$2EndNote$$aJournal Article
000888651 520__ $$aTopological quantum error correcting codes have emerged as leading candidates towards the goal of achieving large-scale fault-tolerant quantum computers. However, quantifying entanglement in these systems of large size in the presence of noise is a challenging task. In this paper, we provide two different prescriptions to characterize noisy stabilizer states, including the surface and the color codes, in terms of localizable entanglement over a subset of qubits. In one approach, we exploit appropriately constructed entanglement witness operators to estimate a witness-based lower bound of localizable entanglement, which is directly accessible in experiments. In the other recipe, we use graph states that are local unitary equivalent to the stabilizer state to determine a computable measurement-based lower bound of localizable entanglement. If used experimentally, this translates to a lower bound of localizable entanglement obtained from single-qubit measurements in specific bases to be performed on the qubits outside the subsystem of interest. Towards computing these lower bounds, we discuss in detail the methodology of obtaining a local unitary equivalent graph state from a stabilizer state, which includes a new and scalable geometric recipe as well as an algebraic method that applies to general stabilizer states of arbitrary size. Moreover, as a crucial step of the latter recipe, we develop a scalable graph-transformation algorithm that creates a link between two specific nodes in a graph using a sequence of local complementation operations. We develop open-source Python packages for these transformations, and illustrate the methodology by applying it to a noisy topological color code, and study how the witness and measurement-based lower bounds of localizable entanglement varies with the distance between the chosen qubits.
000888651 536__ $$0G:(DE-HGF)POF3-144$$a144 - Controlling Collective States (POF3-144)$$cPOF3-144$$fPOF III$$x0
000888651 588__ $$aDataset connected to CrossRef
000888651 7001_ $$0P:(DE-Juel1)179396$$aMüller, Markus$$b1
000888651 7001_ $$00000-0002-4101-2193$$aPal, Amit Kumar$$b2$$eCorresponding author
000888651 773__ $$0PERI:(DE-600)1464444-7$$a10.1088/1367-2630/ab84b3$$gVol. 22, no. 5, p. 053038 -$$n5$$p053038 -$$tNew journal of physics$$v22$$x1367-2630$$y2020
000888651 8564_ $$uhttps://juser.fz-juelich.de/record/888651/files/Amaro_2020_New_J._Phys._22_053038.pdf$$yOpenAccess
000888651 909CO $$ooai:juser.fz-juelich.de:888651$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000888651 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179396$$aForschungszentrum Jülich$$b1$$kFZJ
000888651 9131_ $$0G:(DE-HGF)POF3-144$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000888651 9141_ $$y2020
000888651 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-08-21
000888651 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-08-21
000888651 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000888651 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-08-21
000888651 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNEW J PHYS : 2018$$d2020-08-21
000888651 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-08-21
000888651 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-08-21
000888651 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-08-21
000888651 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-08-21
000888651 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-08-21
000888651 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-08-21
000888651 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000888651 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-08-21
000888651 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2020-08-21
000888651 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-08-21
000888651 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-08-21
000888651 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-08-21$$wger
000888651 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-08-21
000888651 920__ $$lyes
000888651 9201_ $$0I:(DE-Juel1)PGI-2-20110106$$kPGI-2$$lTheoretische Nanoelektronik$$x0
000888651 980__ $$ajournal
000888651 980__ $$aVDB
000888651 980__ $$aUNRESTRICTED
000888651 980__ $$aI:(DE-Juel1)PGI-2-20110106
000888651 9801_ $$aFullTexts