000888653 001__ 888653 000888653 005__ 20240213111729.0 000888653 0247_ $$2doi$$a10.1116/1.5126186 000888653 0247_ $$2Handle$$a2128/26437 000888653 0247_ $$2altmetric$$aaltmetric:77040985 000888653 0247_ $$2WOS$$aWOS:001135487900003 000888653 037__ $$aFZJ-2020-05096 000888653 082__ $$a530 000888653 1001_ $$0P:(DE-HGF)0$$aKaushal, V.$$b0 000888653 245__ $$aShuttling-based trapped-ion quantum information processing 000888653 260__ $$a[Melville, NY]$$bAIP Publishing$$c2020 000888653 3367_ $$2DRIVER$$aarticle 000888653 3367_ $$2DataCite$$aOutput Types/Journal article 000888653 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1607518448_5502 000888653 3367_ $$2BibTeX$$aARTICLE 000888653 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000888653 3367_ $$00$$2EndNote$$aJournal Article 000888653 520__ $$aMoving trapped-ion qubits in a microstructured array of radiofrequency traps offers a route toward realizing scalable quantum processing nodes. Establishing such nodes, providing sufficient functionality to represent a building block for emerging quantum technologies, e.g., a quantum computer or quantum repeater, remains a formidable technological challenge. In this review, the authors present a holistic view on such an architecture, including the relevant components, their characterization, and their impact on the overall system performance. The authors present a hardware architecture based on a uniform linear segmented multilayer trap, controlled by a custom-made fast multichannel arbitrary waveform generator. The latter allows for conducting a set of different ion shuttling operations at sufficient speed and quality. The authors describe the relevant parameters and performance specifications for microstructured ion traps, waveform generators, and additional circuitry, along with suitable measurement schemes to verify the system performance. Furthermore, a set of different basic shuttling operations for a dynamic qubit register reconfiguration is described and characterized in detail 000888653 536__ $$0G:(DE-HGF)POF3-144$$a144 - Controlling Collective States (POF3-144)$$cPOF3-144$$fPOF III$$x0 000888653 588__ $$aDataset connected to CrossRef 000888653 7001_ $$00000-0002-4419-0876$$aLekitsch, B.$$b1 000888653 7001_ $$0P:(DE-HGF)0$$aStahl, A.$$b2 000888653 7001_ $$00000-0001-9129-1314$$aHilder, J.$$b3 000888653 7001_ $$00000-0002-5957-7539$$aPijn, D.$$b4 000888653 7001_ $$0P:(DE-HGF)0$$aSchmiegelow, C.$$b5 000888653 7001_ $$00000-0002-7331-1139$$aBermudez, A.$$b6 000888653 7001_ $$0P:(DE-Juel1)179396$$aMüller, M.$$b7$$eCorresponding author 000888653 7001_ $$00000-0002-5697-2568$$aSchmidt-Kaler, F.$$b8 000888653 7001_ $$00000-0001-5341-7860$$aPoschinger, U.$$b9 000888653 773__ $$0PERI:(DE-600)3000330-1$$a10.1116/1.5126186$$p014101$$tAVS Quantum Science$$v2$$x2639-0213$$y2020 000888653 8564_ $$uhttps://juser.fz-juelich.de/record/888653/files/1.5126186.pdf$$yOpenAccess 000888653 909CO $$ooai:juser.fz-juelich.de:888653$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 000888653 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium 000888653 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000888653 9141_ $$y2020 000888653 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179396$$aForschungszentrum Jülich$$b7$$kFZJ 000888653 9131_ $$0G:(DE-HGF)POF3-144$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0 000888653 920__ $$lyes 000888653 9201_ $$0I:(DE-Juel1)PGI-2-20110106$$kPGI-2$$lTheoretische Nanoelektronik$$x0 000888653 980__ $$ajournal 000888653 980__ $$aVDB 000888653 980__ $$aUNRESTRICTED 000888653 980__ $$aI:(DE-Juel1)PGI-2-20110106 000888653 9801_ $$aFullTexts