001     888653
005     20240213111729.0
024 7 _ |2 doi
|a 10.1116/1.5126186
024 7 _ |2 Handle
|a 2128/26437
024 7 _ |a altmetric:77040985
|2 altmetric
024 7 _ |a WOS:001135487900003
|2 WOS
037 _ _ |a FZJ-2020-05096
082 _ _ |a 530
100 1 _ |0 P:(DE-HGF)0
|a Kaushal, V.
|b 0
245 _ _ |a Shuttling-based trapped-ion quantum information processing
260 _ _ |a [Melville, NY]
|b AIP Publishing
|c 2020
336 7 _ |2 DRIVER
|a article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1607518448_5502
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |0 0
|2 EndNote
|a Journal Article
520 _ _ |a Moving trapped-ion qubits in a microstructured array of radiofrequency traps offers a route toward realizing scalable quantum processing nodes. Establishing such nodes, providing sufficient functionality to represent a building block for emerging quantum technologies, e.g., a quantum computer or quantum repeater, remains a formidable technological challenge. In this review, the authors present a holistic view on such an architecture, including the relevant components, their characterization, and their impact on the overall system performance. The authors present a hardware architecture based on a uniform linear segmented multilayer trap, controlled by a custom-made fast multichannel arbitrary waveform generator. The latter allows for conducting a set of different ion shuttling operations at sufficient speed and quality. The authors describe the relevant parameters and performance specifications for microstructured ion traps, waveform generators, and additional circuitry, along with suitable measurement schemes to verify the system performance. Furthermore, a set of different basic shuttling operations for a dynamic qubit register reconfiguration is described and characterized in detail
536 _ _ |0 G:(DE-HGF)POF3-144
|a 144 - Controlling Collective States (POF3-144)
|c POF3-144
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |0 0000-0002-4419-0876
|a Lekitsch, B.
|b 1
700 1 _ |0 P:(DE-HGF)0
|a Stahl, A.
|b 2
700 1 _ |0 0000-0001-9129-1314
|a Hilder, J.
|b 3
700 1 _ |0 0000-0002-5957-7539
|a Pijn, D.
|b 4
700 1 _ |0 P:(DE-HGF)0
|a Schmiegelow, C.
|b 5
700 1 _ |0 0000-0002-7331-1139
|a Bermudez, A.
|b 6
700 1 _ |0 P:(DE-Juel1)179396
|a Müller, M.
|b 7
|e Corresponding author
700 1 _ |0 0000-0002-5697-2568
|a Schmidt-Kaler, F.
|b 8
700 1 _ |0 0000-0001-5341-7860
|a Poschinger, U.
|b 9
773 _ _ |0 PERI:(DE-600)3000330-1
|a 10.1116/1.5126186
|p 014101
|t AVS Quantum Science
|v 2
|x 2639-0213
|y 2020
856 4 _ |u https://juser.fz-juelich.de/record/888653/files/1.5126186.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:888653
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)179396
|a Forschungszentrum Jülich
|b 7
|k FZJ
913 1 _ |0 G:(DE-HGF)POF3-144
|1 G:(DE-HGF)POF3-140
|2 G:(DE-HGF)POF3-100
|a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|v Controlling Collective States
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2020
915 _ _ |0 StatID:(DE-HGF)0430
|2 StatID
|a National-Konsortium
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-2-20110106
|k PGI-2
|l Theoretische Nanoelektronik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-2-20110106
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21