000888654 001__ 888654
000888654 005__ 20230217124413.0
000888654 0247_ $$2doi$$a10.1103/PhysRevA.101.032317
000888654 0247_ $$2ISSN$$a0556-2791
000888654 0247_ $$2ISSN$$a1050-2947
000888654 0247_ $$2ISSN$$a1094-1622
000888654 0247_ $$2ISSN$$a1538-4446
000888654 0247_ $$2ISSN$$a2469-9926
000888654 0247_ $$2ISSN$$a2469-9934
000888654 0247_ $$2ISSN$$a2469-9942
000888654 0247_ $$2Handle$$a2128/26453
000888654 0247_ $$2altmetric$$aaltmetric:64343609
000888654 0247_ $$2WOS$$aWOS:000519631000001
000888654 037__ $$aFZJ-2020-05097
000888654 082__ $$a530
000888654 1001_ $$00000-0001-7853-9581$$aAmaro, David$$b0
000888654 245__ $$aAnalytical percolation theory for topological color codes under qubit loss
000888654 260__ $$aWoodbury, NY$$bInst.$$c2020
000888654 264_1 $$2Crossref$$3online$$bAmerican Physical Society (APS)$$c2020-03-13
000888654 264_1 $$2Crossref$$3print$$bAmerican Physical Society (APS)$$c2020-03-01
000888654 3367_ $$2DRIVER$$aarticle
000888654 3367_ $$2DataCite$$aOutput Types/Journal article
000888654 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1607524119_5502
000888654 3367_ $$2BibTeX$$aARTICLE
000888654 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000888654 3367_ $$00$$2EndNote$$aJournal Article
000888654 520__ $$aQuantum information theory has shown strong connections with classical statistical physics. For example, quantum error correcting codes like the surface and the color code present a tolerance to qubit loss that is related to the classical percolation threshold of the lattices where the codes are defined. Here we explore such connection to study analytically the tolerance of the color code when the protocol introduced in Vodola et al. [Phys. Rev. Lett. 121, 060501 (2018)] to correct qubit losses is applied. This protocol is based on the removal of the lost qubit from the code, a neighboring qubit, and the lattice edges where these two qubits reside. We first obtain analytically the average fraction of edges r(p) that the protocol erases from the lattice to correct a fraction p of qubit losses. Then, the threshold pc below which the logical information is protected corresponds to the value of p at which r(p) equals the bond-percolation threshold of the lattice. Moreover, we prove that the logical information is protected if and only if the set of lost qubits does not include the entire support of any logical operator. The results presented here open a route to an analytical understanding of the effects of qubit losses in topological quantum error codes.
000888654 536__ $$0G:(DE-HGF)POF3-144$$a144 - Controlling Collective States (POF3-144)$$cPOF3-144$$fPOF III$$x0
000888654 542__ $$2Crossref$$i2020-03-13$$uhttps://link.aps.org/licenses/aps-default-license
000888654 542__ $$2Crossref$$i2021-03-13$$uhttps://link.aps.org/licenses/aps-default-accepted-manuscript-license
000888654 588__ $$aDataset connected to CrossRef
000888654 7001_ $$0P:(DE-HGF)0$$aBennett, Jemma$$b1
000888654 7001_ $$0P:(DE-HGF)0$$aVodola, Davide$$b2
000888654 7001_ $$0P:(DE-Juel1)179396$$aMüller, Markus$$b3$$eCorresponding author$$ufzj
000888654 77318 $$2Crossref$$3journal-article$$a10.1103/physreva.101.032317$$bAmerican Physical Society (APS)$$d2020-03-13$$n3$$p032317$$tPhysical Review A$$v101$$x2469-9926$$y2020
000888654 773__ $$0PERI:(DE-600)2844156-4$$a10.1103/PhysRevA.101.032317$$gVol. 101, no. 3, p. 032317$$n3$$p032317$$tPhysical review / A$$v101$$x2469-9926$$y2020
000888654 8564_ $$uhttps://juser.fz-juelich.de/record/888654/files/PhysRevA.101.032317.pdf$$yOpenAccess
000888654 909CO $$ooai:juser.fz-juelich.de:888654$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000888654 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179396$$aForschungszentrum Jülich$$b3$$kFZJ
000888654 9131_ $$0G:(DE-HGF)POF3-144$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000888654 9141_ $$y2020
000888654 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-10-13
000888654 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-10-13
000888654 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2020-10-13
000888654 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-10-13
000888654 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000888654 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-10-13
000888654 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-10-13
000888654 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-10-13
000888654 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-10-13
000888654 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000888654 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-10-13
000888654 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV A : 2018$$d2020-10-13
000888654 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-10-13
000888654 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-10-13
000888654 920__ $$lyes
000888654 9201_ $$0I:(DE-Juel1)PGI-2-20110106$$kPGI-2$$lTheoretische Nanoelektronik$$x0
000888654 980__ $$ajournal
000888654 980__ $$aVDB
000888654 980__ $$aUNRESTRICTED
000888654 980__ $$aI:(DE-Juel1)PGI-2-20110106
000888654 9801_ $$aFullTexts
000888654 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nature08812
000888654 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1080/00018730701223200
000888654 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/RevModPhys.80.517
000888654 999C5 $$1M. A. Nielsen$$2Crossref$$oM. A. Nielsen Quantum Computation and Quantum Information 2000$$tQuantum Computation and Quantum Information$$y2000
000888654 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0953-4075/46/24/243001
000888654 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevA.99.052312
000888654 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.100.110501
000888654 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.102.230502
000888654 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/1742-5468/2011/02/P02013
000888654 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1126/science.aab3326
000888654 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.98.117207
000888654 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/1367-2630/13/9/093021
000888654 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/s00220-008-0438-0
000888654 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevE.56.3661
000888654 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.99.030603
000888654 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/1367-2630/12/7/075026
000888654 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevA.89.032316
000888654 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/RevModPhys.87.307
000888654 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.88.214411
000888654 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevA.98.012337
000888654 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0003-4916(02)00018-0
000888654 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.97.180501
000888654 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.98.160502
000888654 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.1499754
000888654 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.103.090501
000888654 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.nuclphysb.2004.07.003
000888654 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/1367-2630/13/8/083006
000888654 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.78.3217
000888654 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP04(2015)163
000888654 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP06(2015)149
000888654 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/npjqi.2016.34
000888654 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0953-4075/48/8/083001
000888654 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/RevModPhys.80.885
000888654 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nature07128
000888654 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.111.180501
000888654 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevA.88.062329
000888654 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevA.99.032328
000888654 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.123.120502
000888654 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.95.100501
000888654 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1073/pnas.0800740105
000888654 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.91.085419
000888654 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/s41565-019-0500-4
000888654 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/qute.201900072
000888654 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevA.56.33
000888654 999C5 $$1M. Suchara$$2Crossref$$oM. Suchara 2015$$y2015
000888654 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.102.200501
000888654 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevA.81.022317
000888654 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.121.060501
000888654 999C5 $$1D. Gottesman$$2Crossref$$oD. Gottesman 1997$$y1997
000888654 999C5 $$1D. Stauffer$$2Crossref$$9-- missing cx lookup --$$a10.4324/9780203211595$$y1985
000888654 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevE.78.031136