000888655 001__ 888655
000888655 005__ 20210130011054.0
000888655 0247_ $$2doi$$a10.1103/PhysRevLett.125.200504
000888655 0247_ $$2ISSN$$a0031-9007
000888655 0247_ $$2ISSN$$a1079-7114
000888655 0247_ $$2ISSN$$a1092-0145
000888655 0247_ $$2Handle$$a2128/26455
000888655 0247_ $$2altmetric$$aaltmetric:77112647
000888655 0247_ $$2pmid$$apmid:33258640
000888655 0247_ $$2WOS$$aWOS:000588242400004
000888655 037__ $$aFZJ-2020-05098
000888655 082__ $$a530
000888655 1001_ $$00000-0002-1113-4288$$aKu, Jaseung$$b0
000888655 245__ $$aSuppression of Unwanted Z Z Interactions in a Hybrid Two-Qubit System
000888655 260__ $$aCollege Park, Md.$$bAPS$$c2020
000888655 3367_ $$2DRIVER$$aarticle
000888655 3367_ $$2DataCite$$aOutput Types/Journal article
000888655 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1607524731_4791
000888655 3367_ $$2BibTeX$$aARTICLE
000888655 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000888655 3367_ $$00$$2EndNote$$aJournal Article
000888655 520__ $$aMitigating crosstalk errors, whether classical or quantum mechanical, is critically important for achieving high-fidelity entangling gates in multiqubit circuits. For weakly anharmonic superconducting qubits, unwanted ZZ interactions can be suppressed by combining qubits with opposite anharmonicity. We present experimental measurements and theoretical modeling of two-qubit gate error for gates based on the cross resonance interaction between a capacitively shunted flux qubit and a transmon, and demonstrate the elimination of the ZZ interaction.
000888655 536__ $$0G:(DE-HGF)POF3-144$$a144 - Controlling Collective States (POF3-144)$$cPOF3-144$$fPOF III$$x0
000888655 588__ $$aDataset connected to CrossRef
000888655 7001_ $$0P:(DE-Juel1)176178$$aXu, Xuexin$$b1
000888655 7001_ $$0P:(DE-HGF)0$$aBrink, Markus$$b2
000888655 7001_ $$0P:(DE-HGF)0$$aMcKay, David C.$$b3
000888655 7001_ $$00000-0001-7854-8760$$aHertzberg, Jared B.$$b4
000888655 7001_ $$0P:(DE-Juel1)171686$$aAnsari, Mohammad H.$$b5
000888655 7001_ $$00000-0001-9890-8532$$aPlourde, B. L. T.$$b6$$eCorresponding author
000888655 773__ $$0PERI:(DE-600)1472655-5$$a10.1103/PhysRevLett.125.200504$$gVol. 125, no. 20, p. 200504$$n20$$p200504$$tPhysical review letters$$v125$$x1079-7114$$y2020
000888655 8564_ $$uhttps://juser.fz-juelich.de/record/888655/files/PhysRevLett.125.200504.pdf$$yOpenAccess
000888655 909CO $$ooai:juser.fz-juelich.de:888655$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000888655 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176178$$aForschungszentrum Jülich$$b1$$kFZJ
000888655 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171686$$aForschungszentrum Jülich$$b5$$kFZJ
000888655 9131_ $$0G:(DE-HGF)POF3-144$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000888655 9141_ $$y2020
000888655 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-08-32
000888655 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-08-32
000888655 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2020-08-32
000888655 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-08-32
000888655 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000888655 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV LETT : 2018$$d2020-08-32
000888655 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bPHYS REV LETT : 2018$$d2020-08-32
000888655 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-08-32
000888655 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-08-32
000888655 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-08-32
000888655 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000888655 915__ $$0StatID:(DE-HGF)0571$$2StatID$$aDBCoverage$$bSCOAP3 sponsored Journal$$d2020-08-32
000888655 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-08-32
000888655 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-08-32
000888655 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-08-32$$wger
000888655 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-08-32
000888655 920__ $$lyes
000888655 9201_ $$0I:(DE-Juel1)PGI-2-20110106$$kPGI-2$$lTheoretische Nanoelektronik$$x0
000888655 980__ $$ajournal
000888655 980__ $$aVDB
000888655 980__ $$aUNRESTRICTED
000888655 980__ $$aI:(DE-Juel1)PGI-2-20110106
000888655 9801_ $$aFullTexts