000888658 001__ 888658
000888658 005__ 20240711113846.0
000888658 0247_ $$2doi$$a10.1016/j.nme.2020.100878
000888658 0247_ $$2Handle$$a2128/26459
000888658 0247_ $$2WOS$$aWOS:000600734700070
000888658 037__ $$aFZJ-2020-05100
000888658 082__ $$a624
000888658 1001_ $$0P:(DE-Juel1)157772$$aHouben, A.$$b0$$eCorresponding author
000888658 245__ $$aHydrogen permeation and retention in deuterium plasma exposed 316L ITER steel
000888658 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2020
000888658 3367_ $$2DRIVER$$aarticle
000888658 3367_ $$2DataCite$$aOutput Types/Journal article
000888658 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1607527085_4791
000888658 3367_ $$2BibTeX$$aARTICLE
000888658 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000888658 3367_ $$00$$2EndNote$$aJournal Article
000888658 520__ $$aFuel permeation and retention in fusion reactor wall materials are important issues for plasma operation and safety reasons in ITER. The austenitic stainless steel 316L(N)-IG will be used as structural material in the first wall components in ITER. The impact of deuterium plasma exposure on the deuterium permeation and retention was studied. Polished 316L(N)-IG steel samples were deuterium plasma exposed with an ion energy of 200 eV and at two different fluences. Deuterium gas-driven permeation and thermal desorption spectroscopy measurements were performed afterwards. By comparison of the exposed samples to an unexposed sample, it is concluded that the surface roughness due to plasma exposure has no significant influence on the deuterium permeation through the samples. The first results of thermal desorption spectroscopy analysis show that the main release of retained deuterium is between 600 and 900 and the release temperature increases by increasing the plasma fluence.
000888658 536__ $$0G:(DE-HGF)POF3-113$$a113 - Methods and Concepts for Material Development (POF3-113)$$cPOF3-113$$fPOF III$$x0
000888658 588__ $$aDataset connected to CrossRef
000888658 7001_ $$0P:(DE-Juel1)176892$$aScheuer, J.$$b1
000888658 7001_ $$0P:(DE-Juel1)162160$$aRasiński, M.$$b2$$ufzj
000888658 7001_ $$0P:(DE-Juel1)130070$$aKreter, A.$$b3$$ufzj
000888658 7001_ $$0P:(DE-Juel1)6784$$aUnterberg, B.$$b4$$ufzj
000888658 7001_ $$0P:(DE-Juel1)157640$$aLinsmeier, Ch.$$b5$$ufzj
000888658 773__ $$0PERI:(DE-600)2808888-8$$a10.1016/j.nme.2020.100878$$gVol. 25, p. 100878 -$$p100878 -$$tNuclear materials and energy$$v25$$x2352-1791$$y2020
000888658 8564_ $$uhttps://juser.fz-juelich.de/record/888658/files/1-s2.0-S2352179120301423-main.pdf$$yOpenAccess
000888658 8564_ $$uhttps://juser.fz-juelich.de/record/888658/files/Postprint_Anne_Houben.pdf$$yOpenAccess
000888658 909CO $$ooai:juser.fz-juelich.de:888658$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000888658 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157772$$aForschungszentrum Jülich$$b0$$kFZJ
000888658 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162160$$aForschungszentrum Jülich$$b2$$kFZJ
000888658 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130070$$aForschungszentrum Jülich$$b3$$kFZJ
000888658 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)6784$$aForschungszentrum Jülich$$b4$$kFZJ
000888658 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157640$$aForschungszentrum Jülich$$b5$$kFZJ
000888658 9131_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0
000888658 9141_ $$y2020
000888658 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-02
000888658 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-09-02
000888658 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000888658 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-09-02
000888658 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-09-02
000888658 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-02
000888658 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-09-02
000888658 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-02
000888658 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000888658 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2020-09-02
000888658 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2020-09-02
000888658 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-02
000888658 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-02
000888658 920__ $$lyes
000888658 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x0
000888658 9801_ $$aFullTexts
000888658 980__ $$ajournal
000888658 980__ $$aVDB
000888658 980__ $$aUNRESTRICTED
000888658 980__ $$aI:(DE-Juel1)IEK-4-20101013
000888658 981__ $$aI:(DE-Juel1)IFN-1-20101013