000888660 001__ 888660
000888660 005__ 20240313103133.0
000888660 0247_ $$2Handle$$a2128/26710
000888660 037__ $$aFZJ-2020-05102
000888660 041__ $$aEnglish
000888660 1001_ $$0P:(DE-Juel1)138512$$avan Albada, Sacha$$b0$$eCorresponding author$$ufzj
000888660 245__ $$aUsage and scaling of an open-source spiking multi-area model of monkey cortex
000888660 260__ $$c2020
000888660 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1610440443_27352
000888660 3367_ $$2ORCID$$aWORKING_PAPER
000888660 3367_ $$028$$2EndNote$$aElectronic Article
000888660 3367_ $$2DRIVER$$apreprint
000888660 3367_ $$2BibTeX$$aARTICLE
000888660 3367_ $$2DataCite$$aOutput Types/Working Paper
000888660 520__ $$aWe are entering an age of ‘big’ computational neuroscience, in which neural network models are increasing in size and in numbers of underlying data sets. Consolidating the zoo of models into large-scale models simultaneously consistent with a wide range of data is only possible through the effort of large teams, which can be spread across multiple research institutions. To ensure that computational neuroscientists can build on each other’s work, it is important to make models publicly available as well-documented code. This chapter describes such an open-source model, which relates the connectivity structure of all vision-related cortical areas of the macaque monkey with their resting-state dynamics. We give a brief overview of how to use the executable model specification, which employs NEST as simulation engine, and show its runtime scaling. The solutions found serve as an example for organizing the workflow of future models from the raw experimental data to the visualization of the results, expose the challenges, and give guidance for the construction of ICT infrastructure for neuroscience.
000888660 536__ $$0G:(DE-HGF)POF3-574$$a574 - Theory, modelling and simulation (POF3-574)$$cPOF3-574$$fPOF III$$x0
000888660 536__ $$0G:(DE-HGF)POF3-571$$a571 - Connectivity and Activity (POF3-571)$$cPOF3-571$$fPOF III$$x1
000888660 536__ $$0G:(EU-Grant)945539$$aHBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)$$c945539$$x2
000888660 536__ $$0G:(EU-Grant)785907$$aHBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)$$c785907$$fH2020-SGA-FETFLAG-HBP-2017$$x3
000888660 536__ $$0G:(GEPRIS)347572269$$aSPP 2041 347572269 - Integration von Multiskalen-Konnektivität und Gehirnarchitektur in einem supercomputergestützten Modell der menschlichen Großhirnrinde (347572269)$$c347572269$$x4
000888660 536__ $$0G:(DE-Juel1)jinb33_20121101$$aBrain-Scale Simulations (jinb33_20121101)$$cjinb33_20121101$$fBrain-Scale Simulations$$x5
000888660 536__ $$0G:(EU-Grant)720270$$aHBP SGA1 - Human Brain Project Specific Grant Agreement 1 (720270)$$c720270$$fH2020-Adhoc-2014-20$$x6
000888660 536__ $$0G:(DE-Juel1)aca_20190115$$aAdvanced Computing Architectures (aca_20190115)$$caca_20190115$$fAdvanced Computing Architectures$$x7
000888660 7001_ $$0P:(DE-Juel1)165321$$aPronold, Jari$$b1$$ufzj
000888660 7001_ $$0P:(DE-Juel1)173607$$avan Meegen, Alexander$$b2$$ufzj
000888660 7001_ $$0P:(DE-Juel1)144174$$aDiesmann, Markus$$b3$$ufzj
000888660 8564_ $$uhttps://juser.fz-juelich.de/record/888660/files/arXiv%20preprint.pdf$$yOpenAccess
000888660 909CO $$ooai:juser.fz-juelich.de:888660$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
000888660 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138512$$aForschungszentrum Jülich$$b0$$kFZJ
000888660 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)138512$$a University of Cologne$$b0
000888660 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165321$$aForschungszentrum Jülich$$b1$$kFZJ
000888660 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173607$$aForschungszentrum Jülich$$b2$$kFZJ
000888660 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144174$$aForschungszentrum Jülich$$b3$$kFZJ
000888660 9131_ $$0G:(DE-HGF)POF3-574$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vTheory, modelling and simulation$$x0
000888660 9131_ $$0G:(DE-HGF)POF3-571$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vConnectivity and Activity$$x1
000888660 9141_ $$y2020
000888660 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000888660 920__ $$lyes
000888660 9201_ $$0I:(DE-Juel1)INM-6-20090406$$kINM-6$$lComputational and Systems Neuroscience$$x0
000888660 9201_ $$0I:(DE-Juel1)IAS-6-20130828$$kIAS-6$$lTheoretical Neuroscience$$x1
000888660 9201_ $$0I:(DE-Juel1)INM-10-20170113$$kINM-10$$lJara-Institut Brain structure-function relationships$$x2
000888660 9801_ $$aFullTexts
000888660 980__ $$apreprint
000888660 980__ $$aVDB
000888660 980__ $$aUNRESTRICTED
000888660 980__ $$aI:(DE-Juel1)INM-6-20090406
000888660 980__ $$aI:(DE-Juel1)IAS-6-20130828
000888660 980__ $$aI:(DE-Juel1)INM-10-20170113
000888660 981__ $$aI:(DE-Juel1)IAS-6-20130828