000888672 001__ 888672
000888672 005__ 20230426083224.0
000888672 0247_ $$2doi$$a10.1103/PhysRevB.102.245411
000888672 0247_ $$2ISSN$$a0163-1829
000888672 0247_ $$2ISSN$$a0556-2805
000888672 0247_ $$2ISSN$$a1050-2947
000888672 0247_ $$2ISSN$$a1094-1622
000888672 0247_ $$2ISSN$$a1095-3795
000888672 0247_ $$2ISSN$$a1098-0121
000888672 0247_ $$2ISSN$$a1538-4446
000888672 0247_ $$2ISSN$$a1538-4489
000888672 0247_ $$2ISSN$$a1550-235X
000888672 0247_ $$2ISSN$$a2469-9950
000888672 0247_ $$2ISSN$$a2469-9969
000888672 0247_ $$2ISSN$$a2469-9977
000888672 0247_ $$2Handle$$a2128/26537
000888672 0247_ $$2WOS$$aWOS:000597137100003
000888672 037__ $$aFZJ-2020-05107
000888672 082__ $$a530
000888672 1001_ $$0P:(DE-Juel1)130643$$aFreimuth, Frank$$b0$$eCorresponding author$$ufzj
000888672 245__ $$aDynamical and current-induced Dzyaloshinskii-Moriya interaction: Role for damping, gyromagnetism, and current-induced torques in noncollinear magnets
000888672 260__ $$aWoodbury, NY$$bInst.$$c2020
000888672 3367_ $$2DRIVER$$aarticle
000888672 3367_ $$2DataCite$$aOutput Types/Journal article
000888672 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1619337925_9734
000888672 3367_ $$2BibTeX$$aARTICLE
000888672 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000888672 3367_ $$00$$2EndNote$$aJournal Article
000888672 520__ $$aBoth applied electric currents and magnetization dynamics modify the Dzyaloshinskii-Moriya interaction (DMI), which we call current-induced DMI (CIDMI) and dynamical DMI (DDMI), respectively. We report a theory of CIDMI and DDMI. The inverse of CIDMI consists in charge pumping by a time-dependent gradient of magnetization ∂2M(r,t)/∂r∂t, while the inverse of DDMI describes the torque generated by ∂2M(r,t)/∂r∂t. In noncollinear magnets, CIDMI and DDMI depend on the local magnetization direction. The resulting spatial gradients correspond to torques that need to be included into the theories of Gilbert damping, gyromagnetism, and current-induced torques (CITs) in order to satisfy the Onsager reciprocity relations. CIDMI is related to the modification of orbital magnetism induced by magnetization dynamics, which we call dynamical orbital magnetism (DOM), and spatial gradients of DOM contribute to charge pumping. We present applications of this formalism to the CITs and to the torque-torque correlation in textured Rashba ferromagnets.
000888672 536__ $$0G:(DE-HGF)POF3-142$$a142 - Controlling Spin-Based Phenomena (POF3-142)$$cPOF3-142$$fPOF III$$x0
000888672 536__ $$0G:(DE-Juel1)jiff40_20190501$$aTopological transport in real materials from ab initio (jiff40_20190501)$$cjiff40_20190501$$fTopological transport in real materials from ab initio$$x1
000888672 536__ $$0G:(DE-Juel1)jara0062_20130501$$aTopological transport in real materials from ab initio (jara0062_20130501)$$cjara0062_20130501$$fTopological transport in real materials from ab initio$$x2
000888672 542__ $$2Crossref$$i2020-12-09$$uhttps://link.aps.org/licenses/aps-default-license
000888672 588__ $$aDataset connected to CrossRef
000888672 7001_ $$0P:(DE-Juel1)130548$$aBlügel, Stefan$$b1
000888672 7001_ $$0P:(DE-Juel1)130848$$aMokrousov, Yuriy$$b2
000888672 77318 $$2Crossref$$3journal-article$$a10.1103/physrevb.102.245411$$bAmerican Physical Society (APS)$$d2020-12-09$$n24$$p245411$$tPhysical Review B$$v102$$x2469-9950$$y2020
000888672 773__ $$0PERI:(DE-600)2844160-6$$a10.1103/PhysRevB.102.245411$$gVol. 102, no. 24, p. 245411$$n24$$p245411$$tPhysical review / B$$v102$$x2469-9950$$y2020
000888672 8564_ $$uhttps://juser.fz-juelich.de/record/888672/files/PhysRevB.102.245411.pdf$$yOpenAccess
000888672 909CO $$ooai:juser.fz-juelich.de:888672$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000888672 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130643$$aForschungszentrum Jülich$$b0$$kFZJ
000888672 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130548$$aForschungszentrum Jülich$$b1$$kFZJ
000888672 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130848$$aForschungszentrum Jülich$$b2$$kFZJ
000888672 9131_ $$0G:(DE-HGF)POF3-142$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Spin-Based Phenomena$$x0
000888672 9132_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000888672 9141_ $$y2020
000888672 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-10-13
000888672 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-10-13
000888672 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2020-10-13
000888672 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-10-13
000888672 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000888672 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-10-13
000888672 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-10-13
000888672 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-10-13
000888672 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000888672 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-10-13
000888672 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV B : 2018$$d2020-10-13
000888672 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-10-13
000888672 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-10-13
000888672 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-10-13
000888672 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x0
000888672 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x1
000888672 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000888672 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x3
000888672 980__ $$ajournal
000888672 980__ $$aVDB
000888672 980__ $$aI:(DE-Juel1)IAS-1-20090406
000888672 980__ $$aI:(DE-Juel1)PGI-1-20110106
000888672 980__ $$aI:(DE-82)080009_20140620
000888672 980__ $$aI:(DE-82)080012_20140620
000888672 980__ $$aUNRESTRICTED
000888672 9801_ $$aFullTexts
000888672 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.7567/APEX.8.063004
000888672 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/s41598-018-30063-y
000888672 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/acs.nanolett.8b01502
000888672 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/ncomms9190
000888672 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.98.024419
000888672 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.96.054403
000888672 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.116.247201
000888672 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.121.147203
000888672 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.122.257205
000888672 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0953-8984/26/10/104202
000888672 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.88.214409
000888672 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.99.197202
000888672 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.95.137205
000888672 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.74.024408
000888672 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/1367-2630/12/5/053032
000888672 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.116.077201
000888672 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/RevModPhys.91.035004
000888672 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0953-8984/28/31/316001
000888672 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.107.236601
000888672 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.97.026603
000888672 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.55.2344
000888672 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.91.214401
000888672 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.90.174423
000888672 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.92.064415
000888672 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nnano.2014.252
000888672 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.104.046601
000888672 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.107.046601
000888672 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.jmmm.2007.12.019
000888672 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nature15723
000888672 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.79.104416
000888672 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.86.094406
000888672 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.102.067201
000888672 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.98.246601
000888672 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.95.094434
000888672 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.81.2570
000888672 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.97.134423
000888672 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.101.235430
000888672 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.96.104418
000888672 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.4931429
000888672 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nmat4518
000888672 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.93.214429