001     888680
005     20240712112908.0
024 7 _ |a 10.1021/acs.energyfuels.0c01533
|2 doi
024 7 _ |a 0887-0624
|2 ISSN
024 7 _ |a 1520-5029
|2 ISSN
024 7 _ |a 2128/26507
|2 Handle
024 7 _ |a altmetric:89222025
|2 altmetric
024 7 _ |a WOS:000574904900087
|2 WOS
037 _ _ |a FZJ-2020-05115
082 _ _ |a 660
100 1 _ |a Schweidtmann, Artur M.
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Graph Neural Networks for Prediction of Fuel Ignition Quality
260 _ _ |a Columbus, Ohio
|c 2020
|b American Chemical Society
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1607698171_537
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Prediction of combustion-related properties of (oxygenated) hydrocarbons is an important and challenging task for which quantitative structure–property relationship (QSPR) models are frequently employed. Recently, a machine learning method, graph neural networks (GNNs), has shown promising results for the prediction of structure–property relationships. GNNs utilize a graph representation of molecules, where atoms correspond to nodes and bonds to edges containing information about the molecular structure. More specifically, GNNs learn physicochemical properties as a function of the molecular graph in a supervised learning setup using a backpropagation algorithm. This end-to-end learning approach eliminates the need for selection of molecular descriptors or structural groups, as it learns optimal fingerprints through graph convolutions and maps the fingerprints to the physicochemical properties by deep learning. We develop GNN models for predicting three fuel ignition quality indicators, i.e., the derived cetane number (DCN), the research octane number (RON), and the motor octane number (MON), of oxygenated and nonoxygenated hydrocarbons. In light of limited experimental data in the order of hundreds, we propose a combination of multitask learning, transfer learning, and ensemble learning. The results show competitive performance of the proposed GNN approach compared to state-of-the-art QSPR models, making it a promising field for future research. The prediction tool is available via a web front-end at www.avt.rwth-aachen.de/gnn.
536 _ _ |a 153 - Assessment of Energy Systems – Addressing Issues of Energy Efficiency and Energy Security (POF3-153)
|0 G:(DE-HGF)POF3-153
|c POF3-153
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Rittig, Jan G.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a König, Andrea
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Grohe, Martin
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Mitsos, Alexander
|0 P:(DE-Juel1)172025
|b 4
|u fzj
700 1 _ |a Dahmen, Manuel
|0 P:(DE-Juel1)172097
|b 5
|e Corresponding author
|u fzj
773 _ _ |a 10.1021/acs.energyfuels.0c01533
|g Vol. 34, no. 9, p. 11395 - 11407
|0 PERI:(DE-600)1483539-3
|n 9
|p 11395 - 11407
|t Energy & fuels
|v 34
|y 2020
|x 1520-5029
856 4 _ |u https://juser.fz-juelich.de/record/888680/files/acs.energyfuels.0c01533.pdf
|y Restricted
856 4 _ |y Published on 2020-08-12. Available in OpenAccess from 2021-08-12.
|u https://juser.fz-juelich.de/record/888680/files/revised_manuscript_clean.pdf
909 C O |o oai:juser.fz-juelich.de:888680
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 0
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 1
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 2
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 3
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)172025
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 4
|6 P:(DE-Juel1)172025
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)172097
913 1 _ |a DE-HGF
|l Technologie, Innovation und Gesellschaft
|1 G:(DE-HGF)POF3-150
|0 G:(DE-HGF)POF3-153
|2 G:(DE-HGF)POF3-100
|v Assessment of Energy Systems – Addressing Issues of Energy Efficiency and Energy Security
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-09-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-09-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2020-09-12
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ENERG FUEL : 2018
|d 2020-09-12
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-09-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-09-12
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-09-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-09-12
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2020-09-12
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-09-12
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-10-20170217
|k IEK-10
|l Modellierung von Energiesystemen
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-10-20170217
981 _ _ |a I:(DE-Juel1)ICE-1-20170217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21