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Abstract1

Prediction of combustion-related properties of (oxygenated) hydrocarbons is an im-2

portant and challenging task for which quantitative structure-property relationship3

(QSPR) models are frequently employed. Recently, a machine learning method, graph4

neural networks (GNNs), has shown promising results for the prediction of structure-5

property relationships. GNNs utilize a graph representation of molecules, where atoms6

correspond to nodes and bonds to edges containing information about the molecular7

structure. More specifically, GNNs learn physico-chemical properties as a function of8

the molecular graph in a supervised learning setup using a backpropagation algorithm.9

This end-to-end learning approach eliminates the need for selection of molecular descrip-10

tors or structural groups, as it learns optimal fingerprints through graph convolutions11
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and maps the fingerprints to the physico-chemical properties by deep learning. We12

develop GNN models for predicting three fuel ignition quality indicators, i.e., the de-13

rived cetane number (DCN), the research octane number (RON), and the motor octane14

number (MON), of oxygenated and non-oxygenated hydrocarbons. In light of limited15

experimental data in the order of hundreds, we propose a combination of multi-task16

learning, transfer learning, and ensemble learning. The results show competitive per-17

formance of the proposed GNN approach compared to state-of-the-art QSPR models18

making it a promising field for future research. The prediction tool is available via a19

web front-end at www.avt.rwth-aachen.de/gnn.20

1 Introduction21

The worldwide increase in CO2 emissions and the depletion of fossil resources call for the de-22

velopment of renewable fuels. A wide range of non-oxygenated and oxygenated hydrocarbons23

derived from renewable resources such as biomass has been investigated as pure-component24

fuel or blend components for use in internal combustion engines.1–7 To determine how suited25

a molecule is for a fuel application, combustion-related properties need to be evaluated. The26

cetane number (CN) or derived cetane number (DCN), the research octane number (RON),27

and the motor octane number (MON) are commonly employed to characterize the auto-28

ignition/knocking behavior of a particular fuel. Fuels with a high RON (MON) exhibit low29

knocking tendency and are therefore suitable for spark-ignition (SI) engines, whereas fuels30

with a high (D)CN (approx. above 40) exhibit a short ignition delay which is required31

in compression-ignition (CI) engines.4,8,9 Experimental RON, MON, and (D)CN values are32

available for a range of different fuel molecules,10–12 however, for many interesting molecules33

such data is not readily available. For these molecules predictive models are required that34

enable rapid estimation of fuel ignition quality.4,1335

In the past decades, several models have been developed to predict (D)CN12–28 and36

RON/MON12,16,29–32 of (oxygenated) hydrocarbons by utilizing quantitative structure-property37

2



relationship (QSPR) modeling. In QSPR, the modeling process can be broken down into two38

steps: First, QSPR models introduce molecular descriptors D = [d1, d2, ..., dn]
T that depend39

on the structure of a molecule m. Second, a regression model F (D) : D 7→ p̂ is fitted that40

predicts a property p̂ as a function of D.33 The regression model is either linear or nonlinear,41

depending on the QSPR. Group contribution methods34–36 are a particular type of QSPR42

model where the molecular descriptors D are structural group counts, i.e., the number of43

occurrences of basic functional groups, e.g., methyl (−CH3−) or methylene (−CH2−), in a44

molecule m.45

QSPR models for DCN, RON, and MON differ in the way they encode the molecu-46

lar structure. Various descriptors have been used including structural group counts (e.g.,47

in12–14,21,29–32), the number of aromatic bonds (e.g., in13,27), and topological indices, such as48

the Wiener Index37 or branching indices (e.g., in20,26,31). Previous models have also used a49

variety of techniques for the regression step, e.g., linear or nonlinear regression,13,14,21,26,29,3050

or artificial neural networks (ANNs).12,17–19,22,24,27,30–32 Development of QSPR models, how-51

ever, highly depends on the choice of informative descriptors, a selection process that requires52

domain knowledge and intuition.53

Deep learning allows to learn representations of data with multiple abstraction levels.54

This has shown remarkable success for end-to-end learning in various domains surpass-55

ing previously performed manual feature selection.38 In particular, graph neural networks56

(GNNs)39,40 have recently shown promising results for the prediction of structure-property57

relationships of molecules.41–46 GNNs utilize graph representations of molecules, where atoms58

correspond to nodes and bonds correspond to edges. For each atom, its local environment is59

learned by graph convolutions. These atom environments are then combined into a molec-60

ular fingerprint by applying pooling functions.47 Finally, an ANN maps the fingerprint to61

the molecular property of interest. Since the graph convolutions and pooling functions are62

differentiable, the full model can be trained with the backpropagation algorithm. In contrast63

to QSPRs, the processes of choosing molecular descriptors and performing property regres-64
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sion are thus merged into a simultaneous training step. This enables supervised end-to-end65

training from the molecular graph to the property. In particular, the molecular fingerprints66

adapt during training and learn molecular structure information that is important for the67

property of interest.68

We propose the first GNN model for the prediction of DCN, RON, and MON. The69

model is trained on literature data and is applicable to a wide range of oxygenated and70

non-oxygenated hydrocarbons. The GNN architecture includes state-of-the-art higher-order71

molecular graph features46 and is provided open-source.48 Furthermore, we provide a web72

front-end that can be easily accessed online to make predictions. The web front-end takes73

SMILES strings as input and automatically predicts DCN, RON, and MON (www.avt.74

rwth-aachen.de/gnn).75

One of the main challenges in GNN training in the context of fuel ignition quality is76

the limited availability of training data. To mitigate this issue, we propose three model77

extensions that reduce data requirements while achieving competitive prediction accuracy:78

First, we propose a multi-task learning approach where DCN, RON, and MON are trained79

jointly. This approach shares the graph convolutions and the molecular fingerprint among80

all prediction tasks and thus takes advantage of correlations between DCN, RON, and MON81

data sets. Second, we perform a transfer learning approach that utilizes a broader data set82

from different (D)CN measurement techniques for pre-training of our final model. Third, we83

perform ensemble learning averaging out random model variations.84

The remainder of this paper is structured as follows: In Section 2, we provide a general85

background on graph representations of molecules and GNNs. Then, we briefly describe86

the databases of this work in Section 3. Afterwards, we propose the GNN architecture in87

Section 4. Furthermore, we briefly describe the considered learning methods: multi-task88

learning, transfer learning, and ensemble learning. In Section 5, we present the results, dis-89

cuss the different learning methods, and compare our GNN model to state-of-the-art QSPR90

models. Finally, we conclude our findings and show potentials for future research (Section 6).91
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2 Fundamentals of graph neural networks92

In this section, we present a brief background on graph representations for molecules and93

GNNs. Furthermore, we introduce the concept of higher-order GNNs that is fundamental94

to our modeling approach.95

2.1 Molecular graphs96

Any molecule can be represented as a molecular graph where nodes w, v ∈ V correspond to97

atoms. Edges evw ∈ E correspond to bonds between two atoms.49,50 Furthermore, a feature98

vector is assigned to each node and each edge that includes information about atom types,99

e.g., C atom, and bond types, e.g., double bond. The node feature vectors fV (v) can contain100

additional atom information such as orbital hybridization. To reduce the size of molecular101

graphs, hydrogen atoms can be implicitly included in the feature vectors of nodes of heavy102

atoms by using a hydrogen count, resulting in an H-depleted molecular graph.51 Similarly,103

bond feature vectors fE(evw) can provide additional information, e.g., on ring structures.104

GNNs operate on graph structures, i.e., they take the molecular graph and its feature vectors105

as inputs.106

2.2 Graph neural networks107

As illustrated in Figure 1, GNNs have two main phases: (i) the message passing phase108

and (ii) the readout phase.43 In the message-passing phase, graph convolutional layers are109

commonly applied with a large variety of layer structures existing.41,43,47,52,53110

Figure 2 illustrates the basic concept of graph convolutional layers. The overall goal of111

the graph convolutional layer is to combine node information of a considered node (here #2112

in red) with node information of its neighbors (here #1,3,4 in yellow) and bond information113

(green). To this end, node state vectors and edge state vectors are combined through message114

and update functions as explained in more detail in the following paragraph. The result of115
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Figure 1: Overview of a graph neural network model for property prediction.

the graph convolutional layer is an updated node state vector of the considered node.116

Within a graph convolutional layer, information about a node’s neighborhood N(v) =117

{w | evw ∈ E,w 6= v} is aggregated and passed to the respective node.43 The message ml
v is118

passed along edges to a node by applying a message function M l, i.e.,119

ml
v =

∑
w∈N(v)

M l

(
hl−1w ,fE(evw)

)
, (1)

where hl−1w denotes the hidden state of a neighbor in layer l − 1. The 0-th hidden state120

vector is initialized with the input feature vector of a node, i.e., h0
v = fV (v). The message121

function M l depends on the previous hidden states of the neighbors hl−1w and the features of122

the respective edges fE(evw), with the dimension of the hidden state vector for layers l > 0123

being a hyperparameter. The hidden state of the considered node hl−1v is then updated to124

hlv by an update function U l that combines its hidden state from the previous layer with125

the received message containing information of its neighbors:126

hlv = U l

(
hl−1v ,ml

v

)
(2)
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Figure 2: Illustration of a graph convolutional layer. We consider the update of the node
state vector of the considered atom (#2 in red). The atom information is given as node
state vectors of considered node and its neighbors (#1, 3, 4 in yellow). Furthermore, bond
information is given as edge feature vectors (green). The message function M generates
the message and the update function U computes the update for new state vector of the
considered node.

The message passing and updating is repeated for a fixed number of iterations which results127

in multiple graph convolutional layers l ∈ {1, 2, ..., L}. After L graph convolutions, the hid-128

den states of nodes hLv contain local information of environments with a radius of L nodes.129

In the readout phase, the hidden node states of the last convolutional layer are combined130

into a graph representation vector hG, i.e., molecular fingerprint, by using a pooling function131

hG = p(hL1 ,h
L
2 , ...,h

L
|v|) where p is commonly chosen as the mean, sum, or max function.52132

Finally, the molecular fingerprint vector hG is utilized for regression of molecular properties133

of interest, e.g., using a multilayer perceptron (MLP), i.e., p̂ = MLP(hG).134

A strong advantage of this method is that all functions from the molecular graph to the135

property are explicit and differentiable allowing for supervised training using backpropaga-136

tion. This enables end-to-end learning of GNNs, whereby the graph convolutions and the137

molecular fingerprint adapt during training to extract information of the molecular graph138
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that is relevant for the property to be predicted.41,43,54139

2.3 Higher-order graph neural networks140

Morris et al. have recently extended the message passing to higher-order graph features.46141

Here, the message passing step does not only apply to the initial molecular graph but also142

to modified higher-dimensional molecular graphs. For these higher-dimensional graphs, the143

nodes are k-dimensional subsets s of the nodes in the initial graph, s = {v1, ..., vk} ∈ [V ]k =144

{U ⊆ V | |U | = k} for k > 1. Hence, any combination of k nodes from the original145

graph (atoms in the molecular graph) are combined in a separate node.146

The neighborhood of a k-dimensional node s is defined as N(s) = {t ∈ [V ]k | |s ∩ t| =147

k − 1} for k > 1. This means that two k-dimensional nodes s and t with k atoms each are148

adjacent to each other if the cut set of the two nodes consists of k − 1 atoms. This concept149

of higher-order neighborhood is illustrated in Figure 3, where we consider a red node and its150

yellow neighbor in the initial molecular graph (1-GNN) as well as higher-order graphs.151

2-GNN1-GNN 3-GNN

Figure 3: Illustration of the neighborhood in k-dimensional graphs. We highlight the yellow
neighbors of a red node.

The message passing phase for the initial molecular graph is referred to as 1-GNN. The152

message passing phase for higher-dimensional graphs with nodes consisting of k nodes from153

the original graphs, the structure is called k-GNN.46 When considering k-dimensional nodes,154

the initializations of the hidden node states cannot simply be atom types and features, but155

rather must be combinations of the respective individual atom types and features. At first,156

the initialization of the hidden node state of a k-dimensional node s contains the isomorphic157

type f iso(s).46 For example, the initial H-depleted molecular graph (k = 1) of oxygenated158

hydrocarbons, the isomorphic type of the node v corresponds to the atom type {{C},{O}}159
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and is included in the initial feature vector of a node. For the 2-GNN (k = 2) of such160

hydrocarbons, the isomorphic type of the set s = {v1, v2} corresponds to the 2-set of atom161

types: {{C,C},{C,O},{O,O}}.162

Furthermore, the k-GNN model usually works in a hierarchical manner such that the163

outputs of the (k-1)-th GNN serve as inputs for the k-th GNN.46 Therefore, in addition to164

the isomorphic type, the respective hidden node states of the last graph convolutional layer165

L of the preceding GNN are combined by a pooling function, e.g., mean function, and used166

for initializing the hidden state of a k-dimensional node. Note that this does not refer to167

the pooling of the molecular fingerprints in the readout phase. Hence for the 2-GNN, the168

hidden node states of a subset s = {v1, v2} are initialized with the concatenation (‖) of the169

isomorphic type and the averaged hidden node states of the two respective nodes from the170

1-GNN, i.e., h2,0
s = f iso(s) ‖mean(hLv1 ,h

L
v2
).171

3 Databases for fuel ignition quality172

We collect DCN, RON, and MON data of non-oxygenated and oxygenated hydrocarbons173

from different literature sources. The number of species per molecular class and fuel ignition174

quality indicator is shown in Table 1. Note that we provide our full data set in the Supporting175

Information (SI).176

The cetane number (CN), an indicator for CI fuel quality, is determined in a cooperative177

fuel research (CFR) reference engine.55 In comparison to the CFR engine, testing methods in178

a variety of constant-volume combustion chambers (CVCCs) require lower fuel quantities and179

shorter measurement times, but yield so-called derived cetane numbers (DCNs)11 instead of180

true CFR CN. Our objective is to predict DCN values determined by a particular CVCC-181

based experimental setup, i.e., the ignition quality tester (IQT) which is standardized by the182

ASTM D698056 and widely used to assess diesel fuel ignition quality.13,57 To this end, we183

consider IQT-DCN data from the Compendium of Experimental Cetane Numbers provided184
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by Yanowitz et al.11 for 236 different species.185

Although (D)CN values from non-IQT experiments cannot be expected to closely match186

IQT-DCN,13 we utilize such data for a transfer learning approach. Specifically, we consider187

(D)CN values for 479 species from various measurement setups from the Compendium of188

Experimental Cetane Numbers.11 We exclude the test set compounds, use the remaining 447189

molecules for pre-training, and subsequently refine the resulting model based on IQT-only190

data. We provide the different data sets created for model development online.48191

RON and MON are used to quantify the knocking tendency of a fuel and are suitable192

ignition quality indicators for SI engines. They are measured according to the ASTMD269958
193

and ASTM D270059 standards, respectively. As a database for our model, we take RON194

(MON) values for 335 (318) species from literature.2,10,12,32,60–67 For all reported data (RON,195

MON, DCN), we take average values whenever multiple values have been reported for a196

single species.197

4 Modeling approach198

In this section, the GNN model development is described (cf. Figure 4). First, the workflow199

of the molecular representation is explained in Section 4.1. Then, the basic architecture200

of the GNN model is outlined in Section 4.2. Finally, the model extensions for multi-task201

learning (Section 4.3), transfer learning (Section 4.4), and ensemble learning (Section 4.5)202

are described.203

We use PyTorch Geometric,68 an open-source library for deep learning on graphs in204

Python. The implementation is adapted from our previous work on k-GNNs.46 Our open-205

source code for training as well as the trained models can be retrieved on.48 Additionally,206

for more convenient use, the model can be accessed freely via a web front-end (www.avt.207

rwth-aachen.de/gnn) to make predictions.208

10



Table 1: Databases assembled for this work: Number of species per molecular class and fuel
ignition quality indicator. Number of species in our test set is given in parentheses. Details
can be found in the Supporting Information.

IQT-DCN (D)CN RON MON

n-alkanes 9 (0) 18 (0) 7 (0) 7 (0)
iso-alkanes 17 (2) 39 (2) 43 (6) 42(6)
cycloalkanes 20 (0) 34 (0) 74 (7) 65 (7)
alkenes 15 (3) 33 (3) 87 (16) 84 (16)
cycloalkenes 10 (0) 12 (0) 22 (2) 22 (2)
alkynes 1 (0) 1 (0) 8 (0) 4 (0)
aromatics 13 (4) 63 (4) 41 (12) 43 (12)
alcohols 21 (3) 38 (3) 14 (1) 13 (1)
cyclic alcohols 2 (0) 2 (0) 0 (0) 0 (0)
aldehydes 7 (1) 7 (1) 0 (0) 0 (0)
ketones 9 (3) 9 (3) 8 (1) 7 (1)
cyclic ketones 5 (1) 5 (1) 2 (0) 2 (0)
ethers 17 (3) 27 (3) 5 (0) 5 (0)
hydrofurans 7 (1) 7 (1) 3 (1) 3 (1)
other cyclic ethers 4 (0) 4 (0) 2 (0) 2 (0)
esters 39 (4) 133 (4) 12 (3) 12 (3)
lactones 4 (1) 4 (1) 1 (0) 1 (0)
furans 5 (2) 5 (2) 3 (2) 3 (2)
acetals 2 (0) 2 (0) 1 (0) 1 (0)
carboxylic acids 0 (0) 5 (0) 0 (0) 0 (0)
more than one type of oxygen functionality 29 (4) 31 (4) 2 (0) 2 (0)

Total 236 (32) 479 (32) 335 (51) 318 (51)
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Figure 4: Workflow of the multi-task GNN model for predicting DCN, RON, and MON of
hydrocarbons with SMILES strings as input. The model works in a hierarchical manner in
which the outputs of the 1-GNN part are used as inputs for the 2-GNN. The outputs of both,
the 1-GNN and 2-GNN part, are concatenated and represent the molecular fingerprint. This
serves as the input for the three MLP channels predicting the target properties.

4.1 Molecular representation209

For generating the representation of molecules that serve as an input to the GNN, SMILES210

strings69 are transformed into molecular graphs. Each node and each edge is assigned a211

feature vector. Each feature is represented as a one-hot encoder with the size of the number of212

possible values for this feature and a single entry with value one at the index corresponding to213

the value of the feature. The features are selected according to previous literature41,43,44 and214

are shown in Table 2 and 3 for nodes and edges, respectively. We use RDKit70 for SMILES215

strings transformation and calculation of features. Note that the data set considered in this216

work does not include any atoms with sp3d or sp3d2 hybridization. Furthermore, we find217

that RDKit encodes stereochemistry exclusively by means of the more general E/Z notation218

instead of the cis/trans notation on our data set. The dimensionality of the hybridization219

and stereo feature vector could thus be reduced without loss of information.220
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Table 2: Atomic features used as initial node states, similar to.41,43,44 All features are imple-
mented as one-hot encoders.

Feature Description Dimension

atom type type of atom (C, O) 2
is in ring whether the atom is part of a ring 1
is aromatic whether the atom is part of an aromatic system 1
hybridization sp, sp2, sp3, sp3d, or sp3d2 5
# bonds number of bonds the atom is involved in 6
# Hs number of bonded hydrogen atoms 5

Table 3: Bond features used as edge features, similar to.41,43,44 All features are implemented
as one-hot encoders.

Feature Description Dimension

bond type single, double, triple, or aromatic 4
conjugated whether the bond is conjugated 1
is in ring whether the bond is part of a ring 1
stereo none, any, E/Z, or cis/trans 6

4.2 Model architecture221

The proposed GNN model combines our higher-dimensional GNNs46 with recurrent neural222

network architectures.43,71,72 By using higher-dimensional GNNs, higher-order characteristics223

of a molecular graph can be extracted. The recurrent neural networks allow us to share pa-224

rameters within the message passing phase of a GNN. We use gated recurrent units (GRUs)225

as recurrent neural networks, because GRUs avoid the vanishing gradient problem while226

having fewer parameters than long short-term memories (LSTMs) and thus have the po-227

tential to generalize faster on small data sets.71 As illustrated in Figure 4, we apply two228

GNN structures in the message passing phase: (i) 1-GNN and (ii) 2-GNN. Thereby, atom229

environments in a molecule are first examined locally and then interactions between different230

atom environments are studied.231

First, in the 1-GNN, an edge feature network and a GRU explore local atomic environ-232

ments within the molecular graph. In particular, the updated hidden state in layer l, i.e.,233

hlv, is computed as234

13



hlv = GRU
(
hl−1v , σ

(
θv · hl−1v +ml

v

))
, (3)

where the message ml
v is given by235

ml
v =

∑
w∈N(v)

ANNθe

(
fE(evw)

)
· hl−1w . (4)

Herein, the edge feature network is a feedforward ANN, i.e., ANNθe , that maps edge236

features fE to a parameter matrix θe. Then, the parameter matrix θe is multiplied with237

the hidden states of a node’s v neighbors, hl−1w with w ∈ N(v), to calculate the message238

m. The message is added to the hidden state of the considered node hl−1v multiplied with a239

parameter matrix θv. This result is transformed with an activation function σ, here rectified240

linear unit (ReLU). By applying a GRU, the updated hidden state in layer l, i.e., hlv, is241

finally computed. Note that in this work the hidden states are based on nodes, whereas242

Yang et al.44 consider hidden states based on edges. The initial hidden states h0
v = fV (v)243

are mapped to the dimension of the following hidden states by a shallow ANN with ReLU244

activation.245

Secondly, a higher-dimensional message passing process is applied to enable interactions246

between atom environments (cf. Section 2.3). By combining the final atom representations247

of the 1-GNN into higher-dimensional nodes on which another message passing phase is248

applied, long-range effects of atom groups within a molecule can be captured. In this work,249

we found a 1,2-GNN architecture to have a lower mean absolute error (MAE) compared to250

that of a 1,2,3-GNN or a simple 1-GNN, thus the 1,2-GNN architecture is used to learn251

higher-dimensional graph features. Accordingly, we call the hierarchical combination of the252

1-GNN and 2-GNN structure 1,2-GNN in the remainder of this work. We update the hidden253

states in the 2-GNN message passing similarly to the previously described 1-GNN, except254

that the edge feature network is replaced by a simple parameter matrix θk2 as there are no255

features for edges of the higher-order graph.46 As the 1-GNN is an input to the 2-GNN, the256
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1,2-GNN indirectly takes the edge features of the original molecular graph into account.257

After the message passing process, the model employs sum pooling for aggregating the258

hidden node states of the 1-GNN and 2-GNN resulting in two graph representation vectors.259

Sum pooling is applied, since the nature of the contribution of atoms and bonds to DCN,260

RON, and MON is expected to be additive, similar to in group contribution models.12,13 After261

pooling, the two graph representation vectors are concatenated to the molecular fingerprint,262

i.e., hG = [hTG1−GNN
,hTG2−GNN

]T . Finally, the molecular fingerprint is fed into a deep MLP263

for the prediction of DCN, RON, and MON, p̂ = MLP(hG).264

4.3 Single- and multi-task learning265

Having several prediction tasks, machine learning models can be trained in single- or multi-266

task manner.73–75 In single-task learning, individual models are trained for each task. In267

multi-task learning, some representation is shared among the different tasks. For ANNs,268

this means that weights and bias parameters of hidden layers are shared between multiple269

tasks, i.e., they have equal values. Besides the shared layers, further individual hidden layers270

are employed for each task. The shared representation captures general information that271

is relevant to all tasks.74 In the individual layers, task-specific information is extracted. In272

this way, the model learns more general input representations in the first layers compared273

to single-task models and overfitting can be reduced.74 This is particularly relevant when274

the data sets are considerably small. Furthermore, multi-task learning can enable knowledge275

transfer between different prediction tasks.75 In previous literature, this has been shown to276

yield superior results to single-task models in multiple molecular applications.41,76,77277

In our model, we utilize multi-task learning by sharing the graph convolutional layers to278

create a general molecular fingerprint on which three individual MLPs (also called channels)279

are used for predicting DCN, RON, and MON. As cetane and octane numbers are known to280

correlate negatively,4,8,12,13,78,79 multi-task learning is particularly promising in this context.281
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4.4 Transfer learning282

Another technique enabling knowledge transfer in machine learning is transfer learning.80,81283

In transfer learning, knowledge learned in one domain is transferred to another domain, i.e.,284

to the target task.81 One way to perform transfer learning concerns pre-training of ANNs285

on a (source) task related to the target task. Afterward, the parameters of the pre-trained286

model are used to initialize parameters of a model trained on the target task data. Thus,287

transfer learning is particularly relevant for problems where the target data basis is small.288

Transfer learning has recently been applied in the context of molecular property prediction289

with GNNs. For example, Grambow et al. pre-trained GNNs for thermophysical property290

predictions on large data sets from quantum-mechanical calculations and retrained parts of291

the GNN on a smaller experimental data set.82292

We aim to improve our IQT-DCN prediction by transferring information from additional293

(D)CN data, i.e., from measurement techniques other than IQT (cf. Section 3). Thus, we294

propose a transfer learning approach, where CN and DCN data from various measurement295

setups are utilized for pre-training and then models are retrained on IQT-only DCN data.296

4.5 Ensemble learning297

Ensemble learning is a technique in machine learning where multiple models are trained298

and utilized for a single prediction task.83–85 In most applications, several individual models299

are trained independently on a randomly drawn subset of the training data. Then, the300

predictions of the individual models are averaged to receive a more accurate prediction. This301

way, prediction can be improved as random model errors are averaged out. Averaging single302

model predictions is also known as bootstrap aggregating or bagging.83 This is particularly303

relevant for models with low bias and high variance which is the case for complex GNNs.304

Furthermore, small data sets can lead to high variance.305

We train independent GNN models with randomly selected training and validation sets.306

To ensure an unbiased model comparison, all models share the same independent test set.307
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While some advanced ensembling techniques apply weights to models, e.g., boosting,86 we308

use a standard bagging technique that applies the same weight to all models.309

5 Results and discussion310

In this section, we first briefly summarize the general training settings (Section 5.1) and311

hyperparameter selection (Section 5.2). Then, we analyze the prediction accuracy of the312

proposed model developments: multi-task learning (Section 5.3), transfer learning (Sec-313

tion 5.4), and ensemble learning (Section 5.5). Finally, we compare the proposed model to314

state-of-the-art QSPR models (Section 5.6).315

5.1 General training settings316

As described in Section 3, the data set of DCN values extracted from the Compendium of317

Experimental Cetane Numbers11 includes DCN measurements of 236 different components318

measured with the IQT method. We use this high-quality DCN data set and the RON and319

MON data sets for the training of the single and multi-task models (cf. Section 5.3). As320

typically done in machine learning, the data sets are standardized to zero mean and standard321

deviation of one for each target property, i.e., DCN, RON, and MON. Then, the data sets are322

randomly split into a training (85%) and test (15%) set. The test set is separated from the323

rest of the data and not used until the final testing of the model. For training the model, an324

internal validation set (15% of the original data set) is separated randomly from the training325

data and used for early stopping.326

For each data point, the molecular graphs are generated as described in Section 4.1.327

Then, the model is trained based on the training set. Here, the mean squared error is328

used as the loss function. During training, the model performance regarding the internal329

validation set is measured in each epoch. The learning rate is decreased by a factor of 0.8330

after every 3 consecutive epochs in which the error on the internal validation set did not331
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decrease. Training is stopped either after a maximum number of 300 epochs was reached332

or if the internal validation error did not decrease in the 50 preceding epochs, according to333

early stopping. The error on the internal validation set is also used for comparison of the334

different model structures and the selection of hyperparameters. The training and random335

selection of the internal validation set are repeated 40 times for all models.336

5.2 Hyperparameter selection337

The proposed GNN model exhibits several hyperparameters that need to be chosen. To iden-338

tify a suitable model architecture, the following hyperparameters are varied within the given339

ranges: initial learning rate ∈ {0.0005, 0.001, 0.005}, hidden states size ∈ {32, 64, 128}, num-340

ber of graph convolutional layers ∈ {1, 2, 3, 4, 5} for the 1-GNN part and number of graph341

convolutional layers ∈ {1, 2, 3} for the 2-GNN part, and message passing function ∈ {with-342

out GRU, with GRU}. To this end, we performed an extensive hyperparameter study on a343

preliminary data set with 40 repetitions for each hyperparameter setting. This preliminary344

data set is 99.7% identical to our final training data set. The only difference is that we have345

corrected two mistakes in SMILES strings that occurred in the automated data processing346

and added one new molecule based on new literature that we found. In the hyperparameter347

study, we considered the total MAE, i.e., RON, MON, and DCN together, on the validation348

set averaged over 40 runs to decide on the final architecture and parameters. Based on these349

results, we use message passing with GRU, two graph convolutional layers in the 1-GNN350

part, two graph convolutional layers in the 2-GNN part, a hidden states size of 64, and an351

initial learning rate of 0.001 for the final model. We note that the differences between dif-352

ferent hyperparameter settings are often similar to the variance of the MAE. Therefore, the353

sensitivity of the model performance with respect to the hyperparameter selection is rather354

weak in our study.355

The remaining hyperparameters are described in the following and selected based on356

literature and expert knowledge. Trial and error attempts to change these other hyperpa-357
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rameters did not lead to improved results. We use atom and bond features as described in358

Section 4.1. We apply an edge feature network with three layers and the following number of359

neurons: #1: 12 (i.e., number of edge features), #2: 128, #3: 4096 (i.e., number of hidden360

state squared). The MLPs constitute five layers with #1: 128, #2: 64, #3: 32, #4: 16, #5:361

1 neurons.362

5.3 Single- and multi-task learning363

The aforementioned model settings were used for single-task and multi-task learning. The364

mean absolute errors (MAEs) of the two approaches on their validation and test set are365

displayed in Figure 5. The respective box plots illustrate the distribution of MAEs over the366

40 individual training runs for each model.367

Figure 5 shows that the model performance exhibits a high variance. This is mainly368

caused by the small data size for training, validation, and testing. As the validation sets369

of the 40 independent model runs are selected randomly, they show a larger variance of370

the MAE. In contrast, all 40 independent models share the same test set. Thus, the MAE371

distribution on the test set is more narrow. One methodology against high model variance372

is bootstrap aggregation which is performed in Section 5.5.373

Table 4 summarizes the MAEs on the training, internal validation, and independent test374

set averaged over the 40 training runs for comparison. The averaged results show that the375

multi-task training approach improves the prediction accuracy on all test sets and for all376

predicted properties. For instance, the MAE of the DCN on the test set is reduced by about377

17% from 6.4 to 5.3.378

The results indicate that the simultaneous learning of DCN, RON, and MON leads to379

a better generalization of the graph convolutional layers and thus molecular fingerprint.380

One reason for the synergies are believed to be the correlations between DCN, RON, and381

MON.4,8,12,13,78,79382
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(b) MAE on test set

Figure 5: Comparison of the MAE of the single-task learning and the multi-task learning
approach on the validation and test sets. The box-plots indicate the lowest and largest
MAE (excluding outliers), the lower and upper quartile, and the median of the MAE over 40
independent model instances. Note that points that are more than 1.5 times the interquartile
range away from the top or bottom of the box are marked as outliers.

5.4 Transfer learning383

For the transfer learning approach, we pre-train the single-task DCN model on data from all384

different (D)CN measurement methods, i.e., we use (D)CN data of 447 components collected385

by Yanowitz et al.11 (cf. Section 3). Then, the learned parameters are used to initialize the386

parameters in the graph convolutions and the MLP of the single-task DCN and also the387

multi-task model. For the latter, only the parameters of the MLP for predicting the DCN388

Table 4: Mean absolute error (MAE) of training, validation, and test set averaged over 40
training runs. The table includes single-task learning (STL), multi-task learning (MTL),
transfer learning (TL), and ensemble learning (EL). Lowest test set errors are highlighted in
bold.

DCN RON MON
Train. Val. Test Train. Val. Test Train. Val. Test

STL 2.7 5.5 6.4 3.7 7.0 5.2 3.1 6.0 5.4
MTL 1.8 5.1 5.3 2.8 6.7 5.0 2.3 6.1 5.0
STL & TL 2.2 4.6 6.0 – – – – – –
MTL & TL 1.8 5.2 5.9 3.2 6.6 5.1 2.6 6.0 4.9
MTL & EL 1.8 4.2 2.8 4.5 2.3 4.4
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are transferred from the pre-training since RON and MON values are not subject to transfer389

learning. Finally, we retrain the models by only considering IQT-DCN data.390

The results of the transfer learning approach are summarized in Table 4. Transfer learn-391

ing improves the MAE of the single-task model for predicting the DCN from 6.4 to 6.0.392

For the multi-task model, however, transfer learning does not improve prediction accuracy:393

Test MAEs for RON and MON are almost the same with and without transfer learning.394

Furthermore, test MAE for DCN even increases from 5.3 to 5.9 with transfer learning. One395

possible reason for the poor performance of transfer learning in the multi-task learning is396

that the pre-training is essentially a single-task problem because we use only (D)CN data397

for pre-training. Thus, the pre-trained model could be biased towards (D)CN which then398

could lead to poor generalization of the multi-task model. As a consequence, we do not use399

the transfer learning approach for our final model.400

5.5 Ensemble learning401

After developing a suitable model architecture, model ensembling is applied to address the402

observed high variation (cf. discussion in Section 5.3). As described in Section 4.5, ensemble403

learning averages the response of multiple models and mitigates random model variations.404

Herein, we utilize the previously trained 40 model instances. We perform the ensemble405

learning on the multi-task architecture without transfer learning.406

The results are summarized in Table 4. They show the averaged MAE on the test set407

and the combined training and validation set. The error on a validation set is shown as408

part of the training set because the averaged 40 model instances have individual randomly409

selected validation sets. Ensemble learning reduces the MAE of the DCN, RON, and MON410

significantly from 5.3 to 4.2, from 5.0 to 4.5, and from 5.0 to 4.4, respectively. The bootstrap411

aggregation compensates for the previously identified large model variations.412

Figure 6 illustrates the parity plots for the independent test set of the proposed ensemble413

model. Herein, every point represents the averaged prediction of 40 multi-task models for414
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a data point in the test set. The plots show high coefficients of determination for all three415

properties, i.e., R2
DCN = 0.94, R2

RON = 0.94, and R2
MON = 0.89. For the MON, the higher416

number of outliers causes a slightly weaker coefficient of determination. Note that the parity417

plots show an uneven distribution of the data in the test set. For instance, there exist few418

data points with DCN numbers above 100 or RON numbers below 50.419
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Figure 6: Multi-task GNN model ensembling: Parity plots for (a) RON, (b) MON, and (c)
DCN test sets.

5.6 Comparison to recent QSPR models420

We compare our GNN model to three recent literature QSPR models for fuel ignition in-421

dicator prediction. Our own previous model follows a group contribution and multivariate422
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nonlinear regression approach for predicting IQT-DCN.13 The model by vom Lehn et al.31423

combines group contributions and a feed-forward artificial neural network (ANN) to predict424

RON. Finally, the model by Kubic et al.12 combines group contributions and a multi-task425

feed-forward ANN for simultaneous regression of CN, RON, and MON values.426

A fair comparison between the different models is difficult for multiple reasons. First,427

models have been developed from different training data sets, leading to different model ap-428

plicability domains. This is most evident in case of the model proposed by vom Lehn et al.,31429

which is applicable to alkanes, alkenes, cyclic alkanes, and alcohols only, whereas molecular430

diversity of the training data is much higher for our GNN model and the other two models.431

Second, different performance evaluation methods, i.e., cross-validation or evaluation on an432

independent test set, and different performance metrics, i.e., mean absolute error (MAE) or433

coefficient of determination (R2), have been employed, as can be seen from Table 5. Our434

procedure for GNN hyperparameter tuning (cf. Section 5.2) follows a cross-validation (CV)435

approach, i.e., we repeatedly split the dataset into training and validation sets and use the436

average validation set MAE to find the optimal hyperparameter settings. Since CV-MAE437

can be a biased estimator of the true prediction error of a model if model parameters are438

tuned outside of the CV loop,87 we use an independent test set to estimate the true pre-439

diction error. Third, many molecules located in our test set have been used to train the440

models proposed by Dahmen & Marquardt,13 Kubic et al.,12 and vom Lehn et al.31 Simply441

rerunning these models on our test set would give them an unfair advantage.442

Still, a comparative true prediction performance test can be carried out by exclusively443

examining those compounds from our test set that were not included in the respective train-444

ing set of a comparison model. This approach results in the four head-to-head comparisons445

shown in Tables 6 to 9.446

Table 6 compares the DCN predictions made by the GNN model to the predictions made447

by our previous DCN model and the measurement values. While both models exhibit a448

decent performance, the MAE of the proposed GNN model is lower than the MAE of our449
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previous QSPR model (3.6 instead of 5.2). Table 7 shows the comparison between the450

GNN model and the RON model by vom Lehn et al.31 Since the latter model is applicable451

to alkanes, alkenes, cycloalkanes, and alcohols only, this comparison is based on just four452

compounds. The resulting MAEs are roughly similar. Finally, Table 8 and 9 compare453

the GNN model to the multi-task ANN model by Kubic et al.,12 where it can be noted454

that the MAEs of the GNN model are far lower. In summary, the different head-to-head455

comparisons suggest highly competitive performance of the new GNN model. We provide456

our model, the training scripts, and all data sets open-source48 as well as a web front-end457

(www.avt.rwth-aachen.de/gnn) so that others can easily perform their own benchmarks.458

Development of QSPR and GNN models differs significantly from each other also from459

a conceptual point of view. Most notably, QSPR modeling requires to choose a set of de-460

scriptors, e.g., structural group counts, as potential explanatory variables. This step may461

facilitate understanding of the prediction problem (the human learns through model devel-462

opment) and can encode physical understanding into a tailored model structure. However,463

this also means that QSPR models inherently rely on assumptions about the underlying464

phenomena, i.e., the descriptors or structural groups of potential value. In contrast, the465

presented GNN method is trained in an end-to-end learning approach, as it relies on only466

few atomic and bond features (cf. Tables 2 and 3), and thus provides a flexible model struc-467

ture that can possibly learn a broad variety of properties. End-to-end learning with graph468

convolutions, however, comes at the cost of higher computational effort for training.469

Applicability domain (AD) quantification in GNN-based property models is an open470

research question, which is closely linked with the question of how well GNNs can gener-471

alize. Traditional AD methods used in QSPR modeling, e.g., the Williams plot,88,89 are472

not directly transferable to GNNs unless a suitable distance metric for molecular graphs is473

established that can be linked to GNN prediction performance. There are some recent works474

on autoencoders for molecular graphs90–95 that might help to derive AD concepts based on475

a real-valued latent space identified by the autoencoders. When making predictions with476
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our model, we recommend to check from Table 1 whether property data was available dur-477

ing model development for the molecular class the compound of interest belongs to. For478

instance, from Table 1 it can be seen that no RON/MON data for aldehydes and cyclic479

alcohols were available for model training. Whereas it might prove a reasonable assumption480

that cyclic alcohols behave similar to acyclic alcohols, we abstain from using our model to481

predict RON/MON of aldehydes.482

Table 5: Performance comparison of the proposed model to three recent QSPR models.

GNN model Dahmen & Marquardt13 Kubic et al.12 vom Lehn et al.31

method test set test set cross-validation cross-validation

metric MAE R2 MAE R2 MAE R2 MAE R2

DCN 4.2 0.94 5.8 0.84 – 0.90 – –
RON 4.5 0.94 – – – 0.93 4.0 0.92
MON 4.4 0.89 – – – 0.91 – –

Table 6: Comparison with the IQT-DCN model by Dahmen & Marquardt13 based on those
molecules from our DCN test set that were not included in the training set used by Dahmen
& Marquardt.13

true value GNN model Dahmen & Marquardt13
DCN DCN DCN

1,2-dimethylbenzene 8.3 7.4 7.9
furan 7.0 8.2 9.4
methyl erucate 74.2 75.9 87.6
2-heptanol 25.0 24.1 21.5
4-ethyl guaiacol 19.6 17.4 25.4
1,3,5-triisopropylbenzene 2.8 11.5 10.4
ocimene 28.0 20.1 14.9
1,4-dimethylbenzene 6.2 6.8 7.9
6-undecanone 49.0 59.2 51.8
4-nonanone 43.0 41.3 41.3

mean absolute error (MAE) 3.6 5.2
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Table 7: Comparison with the ANN-based RON model by vom Lehn et al.31 based on those
molecules from our RON test set that were not included in the training set used by vom Lehn
et al.31 Since the model by vom Lehn et al. is applicable to alkanes, alkenes, cycloalkanes,
and alcohols only, this comparison is limited to four compounds.

true value GNN model vom Lehn et al.31
RON RON RON

methylcyclopropane 102.5 107.1 106.0
2,2-dimethyloctane 49.0 38.6 31.7
1,5-hexadiene 71.1 82.9 86.7
2,4-hexadiene 97.1 91.0 98.6

mean absolute error (MAE) 8.2 9.5

Table 8: Comparison with the ANN model by Kubic et al.12 based on those molecules from
our DCN test set that were not included in the training set used by Kubic et al.12

true value GNN model Kubic et al.12
DCN DCN DCN

δ-undecalactone 48.6 47.1 38.6
2-heptanol 25.0 24.1 25.2
4-methoxybenzaldehyde 25.8 12.5 49.7
geraniol 19.3 19.4 22.5
4-ethyl guaiacol 19.6 17.4 5.1
ocimene 28.0 20.1 -2.0
dodecyl vinyl ether 101.7 96.0 126.2
propylene glycol monomethyl ether acetate 24.0 24.5 34.2
6-undecanone 49.0 59.2 58.5

mean absolute error (MAE) 4.7 14.0
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Table 9: Comparison with the ANN model by Kubic et al.12 based on those molecules from
our RON & MON test set that were not included in the training set used by Kubic et al.12

true value GNN model Kubic et al.12
RON MON RON MON RON MON

methylcyclopropane 102.5 81.2 107.1 87.5 101.1 90.2
furan 108.6 91.6 111.6 103.3 98.9 97.4
aceticacid-2-methylpropylester 108.7 112.3 109.3 107.3 123.4 105.6
4-methylcyclohexene 84.1 67.0 85.8 66.3 59.2 54.2
tetrahydrofuran 72.9 64.8 66.3 49.1 92.8 87.9
2-octene 56.3 56.5 60.3 60.1 42.3 39.1
1-methylcyclohexene 89.2 72.1 90.1 71.6 64.3 58.6
2-phenylpentane 103.5 92.1 101.2 91.2 99.8 97.7
2-methylpropanoicacidmethylester 103.6 104.7 109.8 108.1 138.9 108.9
1,5-hexadiene 71.1 37.6 82.9 61.7 95.9 81.7
3-methyl-2-butanone 108.9 102.2 104.7 96.9 111.6 103.0
methyl-2-methylbutanoate 110.5 99.1 108.9 105.1 119.9 104.8
4-octene (trans) 73.3 74.3 67.5 67.2 89.1 88.7
2,4-hexadiene 97.1 80.7 91.0 78.4 103.3 88.4
allylcyclopentane 52.1 45.6 68.5 58.3 86.0 73.0

mean absolute error (MAE) 5.1 7.0 16.1 13.2

6 Conclusion483

Predictive models for fuel ignition quality play a crucial role in the development of novel fu-484

els. We propose a data-driven graph neural network (GNN) model for the prediction of three485

important fuel auto-ignition indicators, i.e., the derived cetane number (DCN), the research486

octane number (RON), and the motor octane number (MON). Our model is applicable to a487

wide spectrum of non-oxygenated and oxygenated hydrocarbons, shows competitive perfor-488

mance to state-of-the-art models, and can be easily accessed via a web interface.489

From the methodological point of view, our GNN-based model offers the advantage that,490

in contrast to previous works based on QSPR modeling, no molecular descriptors or struc-491

tural groups, have to be selected, because GNNs achieve end-to-end learning from the molec-492

ular structure to the properties of interest. While such a data-driven approach is often493

believed to require extensively large data sets, this work demonstrates that good model ac-494
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curacies can indeed be achieved for small data sets (order of hundreds) by using multi-task495

and ensemble learning. Given the expected future increase in measurement data available496

for training, we expect further potential for GNNs in fuel ignition quality prediction. We497

provide the corresponding training code and the final model open-source making it a viable498

tool for further development. Finally, this work may constitute a prototype for rapid, ver-499

satile property prediction beyond DCN, RON and MON and thus for property prediction in500

various disciplines.501
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