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1 Abstract

2 Prediction of combustion-related properties of (oxygenated) hydrocarbons is an im-
3 portant and challenging task for which quantitative structure-property relationship
4 (QSPR) models are frequently employed. Recently, a machine learning method, graph
5 neural networks (GNNs), has shown promising results for the prediction of structure-
6 property relationships. GNNs utilize a graph representation of molecules, where atoms
7 correspond to nodes and bonds to edges containing information about the molecular
8 structure. More specifically, GNNs learn physico-chemical properties as a function of
9 the molecular graph in a supervised learning setup using a backpropagation algorithm.
10 This end-to-end learning approach eliminates the need for selection of molecular descrip-
1 tors or structural groups, as it learns optimal fingerprints through graph convolutions
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and maps the fingerprints to the physico-chemical properties by deep learning. We
develop GNN models for predicting three fuel ignition quality indicators, i.e., the de-
rived cetane number (DCN), the research octane number (RON), and the motor octane
number (MON), of oxygenated and non-oxygenated hydrocarbons. In light of limited
experimental data in the order of hundreds, we propose a combination of multi-task
learning, transfer learning, and ensemble learning. The results show competitive per-
formance of the proposed GNN approach compared to state-of-the-art QSPR models
making it a promising field for future research. The prediction tool is available via a

web front-end at www.avt.rwth-aachen.de/gnn.

1 Introduction

The worldwide increase in CO5 emissions and the depletion of fossil resources call for the de-
velopment of renewable fuels. A wide range of non-oxygenated and oxygenated hydrocarbons
derived from renewable resources such as biomass has been investigated as pure-component
fuel or blend components for use in internal combustion engines.'” To determine how suited
a molecule is for a fuel application, combustion-related properties need to be evaluated. The
cetane number (CN) or derived cetane number (DCN), the research octane number (RON),
and the motor octane number (MON) are commonly employed to characterize the auto-
ignition/knocking behavior of a particular fuel. Fuels with a high RON (MON) exhibit low
knocking tendency and are therefore suitable for spark-ignition (SI) engines, whereas fuels
with a high (D)CN (approx. above 40) exhibit a short ignition delay which is required
in compression-ignition (CI) engines.**? Experimental RON, MON, and (D)CN values are
available for a range of different fuel molecules, !°!? however, for many interesting molecules
such data is not readily available. For these molecules predictive models are required that
enable rapid estimation of fuel ignition quality.*!3

In the past decades, several models have been developed to predict (D)CN1228 and

RON/MON 12:16:29732 of (oxygenated) hydrocarbons by utilizing quantitative structure-property
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relationship (QSPR) modeling. In QSPR, the modeling process can be broken down into two
steps: First, QSPR models introduce molecular descriptors D = [dy, ds, ..., d,]T that depend
on the structure of a molecule m. Second, a regression model F(D) : D ~ p is fitted that
predicts a property p as a function of .33 The regression model is either linear or nonlinear,

34736 are a particular type of QSPR

depending on the QSPR. Group contribution methods
model where the molecular descriptors D are structural group counts, i.e., the number of
occurrences of basic functional groups, e.g., methyl (—CHz—) or methylene (—CHy—), in a
molecule m.

QSPR models for DCN, RON, and MON differ in the way they encode the molecu-
lar structure. Various descriptors have been used including structural group counts (e.g.,

. 12-14,21,29-32 '1113’27)

in ), the number of aromatic bonds (e.g., i , and topological indices, such as

'n20,26,31)

the Wiener Index3” or branching indices (e.g., i . Previous models have also used a

variety of techniques for the regression step, e.g., linear or nonlinear regression, 1314:21,26,29,30
or artificial neural networks (ANNs).12:17719,22,24.27.30-32 Dyeyelopment of QSPR models, how-
ever, highly depends on the choice of informative descriptors, a selection process that requires
domain knowledge and intuition.

Deep learning allows to learn representations of data with multiple abstraction levels.
This has shown remarkable success for end-to-end learning in various domains surpass-
ing previously performed manual feature selection.®® In particular, graph neural networks
(GNNs) 3940 have recently shown promising results for the prediction of structure-property
relationships of molecules. #' 46 GNNs utilize graph representations of molecules, where atoms
correspond to nodes and bonds correspond to edges. For each atom, its local environment is
learned by graph convolutions. These atom environments are then combined into a molec-
ular fingerprint by applying pooling functions.*” Finally, an ANN maps the fingerprint to
the molecular property of interest. Since the graph convolutions and pooling functions are

differentiable, the full model can be trained with the backpropagation algorithm. In contrast

to QSPRs, the processes of choosing molecular descriptors and performing property regres-



65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

sion are thus merged into a simultaneous training step. This enables supervised end-to-end
training from the molecular graph to the property. In particular, the molecular fingerprints
adapt during training and learn molecular structure information that is important for the
property of interest.

We propose the first GNN model for the prediction of DCN, RON, and MON. The
model is trained on literature data and is applicable to a wide range of oxygenated and
non-oxygenated hydrocarbons. The GNN architecture includes state-of-the-art higher-order
molecular graph features“® and is provided open-source.?® Furthermore, we provide a web
front-end that can be easily accessed online to make predictions. The web front-end takes
SMILES strings as input and automatically predicts DCN, RON, and MON (www.avt.
rwth-aachen.de/gnn).

One of the main challenges in GNN training in the context of fuel ignition quality is
the limited availability of training data. To mitigate this issue, we propose three model
extensions that reduce data requirements while achieving competitive prediction accuracy:
First, we propose a multi-task learning approach where DCN, RON, and MON are trained
jointly. This approach shares the graph convolutions and the molecular fingerprint among
all prediction tasks and thus takes advantage of correlations between DCN, RON, and MON
data sets. Second, we perform a transfer learning approach that utilizes a broader data set
from different (D)CN measurement techniques for pre-training of our final model. Third, we
perform ensemble learning averaging out random model variations.

The remainder of this paper is structured as follows: In Section 2, we provide a general
background on graph representations of molecules and GNNs. Then, we briefly describe
the databases of this work in Section 3. Afterwards, we propose the GNN architecture in
Section 4. Furthermore, we briefly describe the considered learning methods: multi-task
learning, transfer learning, and ensemble learning. In Section 5, we present the results, dis-
cuss the different learning methods, and compare our GNN model to state-of-the-art QSPR

models. Finally, we conclude our findings and show potentials for future research (Section 6).
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2 Fundamentals of graph neural networks

In this section, we present a brief background on graph representations for molecules and
GNNs. Furthermore, we introduce the concept of higher-order GNNs that is fundamental

to our modeling approach.

2.1 Molecular graphs

Any molecule can be represented as a molecular graph where nodes w,v € V' correspond to
atoms. Edges e,,, € E correspond to bonds between two atoms.*?*° Furthermore, a feature
vector is assigned to each node and each edge that includes information about atom types,
e.g., C atom, and bond types, e.g., double bond. The node feature vectors f" (v) can contain
additional atom information such as orbital hybridization. To reduce the size of molecular
graphs, hydrogen atoms can be implicitly included in the feature vectors of nodes of heavy
atoms by using a hydrogen count, resulting in an H-depleted molecular graph.>! Similarly,
bond feature vectors f(e,,) can provide additional information, e.g., on ring structures.
GNNs operate on graph structures, i.e., they take the molecular graph and its feature vectors

as inputs.

2.2 Graph neural networks

As illustrated in Figure 1, GNNs have two main phases: (i) the message passing phase
and (ii) the readout phase.?® In the message-passing phase, graph convolutional layers are
commonly applied with a large variety of layer structures existing. 41:43:47:52,53

Figure 2 illustrates the basic concept of graph convolutional layers. The overall goal of
the graph convolutional layer is to combine node information of a considered node (here #2
in red) with node information of its neighbors (here #1,3,4 in yellow) and bond information

(green). To this end, node state vectors and edge state vectors are combined through message

and update functions as explained in more detail in the following paragraph. The result of
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Figure 1: Overview of a graph neural network model for property prediction.

the graph convolutional layer is an updated node state vector of the considered node.
Within a graph convolutional layer, information about a node’s neighborhood N(v) =
{w | eyw € E,w # v} is aggregated and passed to the respective node.?® The message m/!, is

passed along edges to a node by applying a message function M, i.e.,

= > M (R ) o

weN (v)
where hiu_l denotes the hidden state of a neighbor in layer [ — 1. The 0-th hidden state
vector is initialized with the input feature vector of a node, i.e., hY = f"(v). The message
function M ; depends on the previous hidden states of the neighbors hi;l and the features of
the respective edges f%(e,,), with the dimension of the hidden state vector for layers [ > 0
being a hyperparameter. The hidden state of the considered node hffl is then updated to
hf] by an update function U, that combines its hidden state from the previous layer with

the received message containing information of its neighbors:

B, = U, (Rl m)) (2)
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Figure 2: TIllustration of a graph convolutional layer. We consider the update of the node
state vector of the considered atom (#2 in red). The atom information is given as node
state vectors of considered node and its neighbors (#1, 3, 4 in yellow). Furthermore, bond
information is given as edge feature vectors (green). The message function M generates
the message and the update function U computes the update for new state vector of the
considered node.

The message passing and updating is repeated for a fixed number of iterations which results
in multiple graph convolutional layers [ € {1,2, ..., L}. After L graph convolutions, the hid-
den states of nodes h” contain local information of environments with a radius of L nodes.

In the readout phase, the hidden node states of the last convolutional layer are combined
into a graph representation vector hg, i.e., molecular fingerprint, by using a pooling function
hg = p(hlL , h§ s s hﬁ‘) where p is commonly chosen as the mean, sum, or max function. 52
Finally, the molecular fingerprint vector h¢ is utilized for regression of molecular properties
of interest, e.g., using a multilayer perceptron (MLP), i.e., p = MLP(hg).

A strong advantage of this method is that all functions from the molecular graph to the
property are explicit and differentiable allowing for supervised training using backpropaga-

tion. This enables end-to-end learning of GNNs, whereby the graph convolutions and the

molecular fingerprint adapt during training to extract information of the molecular graph
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that is relevant for the property to be predicted.*!:43:54

2.3 Higher-order graph neural networks

Morris et al. have recently extended the message passing to higher-order graph features.6

Here, the message passing step does not only apply to the initial molecular graph but also
to modified higher-dimensional molecular graphs. For these higher-dimensional graphs, the
nodes are k-dimensional subsets s of the nodes in the initial graph, s = {vy,...,vx} € [V]F =
{U C V | |U = k}for k> 1. Hence, any combination of k nodes from the original
graph (atoms in the molecular graph) are combined in a separate node.

The neighborhood of a k-dimensional node s is defined as N(s) = {t € [V]* | [sNt| =
k — 1} for k > 1. This means that two k-dimensional nodes s and ¢ with k atoms each are
adjacent to each other if the cut set of the two nodes consists of £ — 1 atoms. This concept
of higher-order neighborhood is illustrated in Figure 3, where we consider a red node and its

yellow neighbor in the initial molecular graph (1-GNN) as well as higher-order graphs.

1-GNN 2-GNN 3-GNN

@)
//%E
(@]
-/

Figure 3: Illustration of the neighborhood in k-dimensional graphs. We highlight the yellow
neighbors of a red node.

The message passing phase for the initial molecular graph is referred to as 1-GNN. The
message passing phase for higher-dimensional graphs with nodes consisting of £ nodes from
the original graphs, the structure is called k-GNN.%6 When considering k-dimensional nodes,
the initializations of the hidden node states cannot simply be atom types and features, but
rather must be combinations of the respective individual atom types and features. At first,
the initialization of the hidden node state of a k-dimensional node s contains the isomorphic
type fio(s).19 For example, the initial H-depleted molecular graph (k = 1) of oxygenated

hydrocarbons, the isomorphic type of the node v corresponds to the atom type {{C},{O}}
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and is included in the initial feature vector of a node. For the 2-GNN (k = 2) of such
hydrocarbons, the isomorphic type of the set s = {v;,v2} corresponds to the 2-set of atom
types: {{C,C},{C,0},{0,0}}.

Furthermore, the k-GNN model usually works in a hierarchical manner such that the
outputs of the (k-1)-th GNN serve as inputs for the k-th GNN.4¢ Therefore, in addition to
the isomorphic type, the respective hidden node states of the last graph convolutional layer
L of the preceding GNN are combined by a pooling function, e.g., mean function, and used
for initializing the hidden state of a k-dimensional node. Note that this does not refer to
the pooling of the molecular fingerprints in the readout phase. Hence for the 2-GNN, the
hidden node states of a subset s = {vy,v9} are initialized with the concatenation (||) of the
isomorphic type and the averaged hidden node states of the two respective nodes from the

1-GNN, ie., h2* = f,.(s) || mean(h] , hl).

iso V1)

3 Databases for fuel ignition quality

We collect DCN, RON, and MON data of non-oxygenated and oxygenated hydrocarbons
from different literature sources. The number of species per molecular class and fuel ignition
quality indicator is shown in Table 1. Note that we provide our full data set in the Supporting
Information (SI).

The cetane number (CN), an indicator for CI fuel quality, is determined in a cooperative
fuel research (CFR) reference engine.® In comparison to the CFR engine, testing methods in
a variety of constant-volume combustion chambers (CVCCs) require lower fuel quantities and
shorter measurement times, but yield so-called derived cetane numbers (DCNs)!! instead of
true CFR CN. Our objective is to predict DCN values determined by a particular CVCC-
based experimental setup, i.e., the ignition quality tester (IQT) which is standardized by the
ASTM D6980°¢ and widely used to assess diesel fuel ignition quality.*®” To this end, we

consider IQT-DCN data from the Compendium of Experimental Cetane Numbers provided
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by Yanowitz et al.! for 236 different species.

Although (D)CN values from non-IQT experiments cannot be expected to closely match
IQT-DCN,!? we utilize such data for a transfer learning approach. Specifically, we consider
(D)CN values for 479 species from various measurement setups from the Compendium of
Experimental Cetane Numbers. ! We exclude the test set compounds, use the remaining 447
molecules for pre-training, and subsequently refine the resulting model based on IQT-only
data. We provide the different data sets created for model development online.*®

RON and MON are used to quantify the knocking tendency of a fuel and are suitable
ignition quality indicators for SI engines. They are measured according to the ASTM D26995
and ASTM D2700% standards, respectively. As a database for our model, we take RON
(MON) values for 335 (318) species from literature. 2012326067 For all reported data (RON,
MON, DCN), we take average values whenever multiple values have been reported for a

single species.

4 Modeling approach

In this section, the GNN model development is described (cf. Figure 4). First, the workflow
of the molecular representation is explained in Section 4.1. Then, the basic architecture
of the GNN model is outlined in Section 4.2. Finally, the model extensions for multi-task
learning (Section 4.3), transfer learning (Section 4.4), and ensemble learning (Section 4.5)
are described.

We use PyTorch Geometric,®® an open-source library for deep learning on graphs in
Python. The implementation is adapted from our previous work on k-GNNs.%6 Our open-
source code for training as well as the trained models can be retrieved on.*® Additionally,
for more convenient use, the model can be accessed freely via a web front-end (www.avt.

rwth-aachen.de/gnn) to make predictions.

10



Table 1: Databases assembled for this work: Number of species per molecular class and fuel
ignition quality indicator. Number of species in our test set is given in parentheses. Details

can be found in the Supporting Information.

IQT-DCN (D)CN RON MON
n-alkanes 9 (0) 18 (0) 7 (0) 7 (0)
iso-alkanes 17 (2) 39 (2) 43 (6) 42(6)
cycloalkanes 20 (0) 34 (0) 74 (7) 65 (7)
alkenes 15(3)  33(3) 87 (16) 84 (16)
cycloalkenes 10 (0) 12 (0) 22 (2) 22 (2)
alkynes 1 (0) 1 (0) 8 (0) 4 (0)
aromatics 13 (4) 63 (4) 41 (12) 43 (12)
alcohols 21 (3) 38 (3) 14 (1) 13 (1)
cyclic alcohols 2 (0) 2 (0) 0 (0) 0 (0)
aldehydes 7(1) 7 (1) 0 (0) 0 (0)
ketones 9 (3) 9 (3) 8 (1) 7(1)
cyclic ketones 5 (1) 5 (1) 2 (0) 2 (0)
ethers 17 (3) 27 (3) 5 (0) 5 (0)
hydrofurans 7(1) 7 (1) 3 (1) 3 (1)
other cyclic ethers 4 (0) 4 (0) 2 (0) 2 (0)
esters 39 (4) 133 (4) 12 (3) 12 (3)
lactones 4 (1) 4 (1) 1 (0) 1 (0)
furans 5(2) 5(2) 3(2) 3(2)
acetals 2 (0) 2 (0) 1 (0) 1 (0)
carboxylic acids 0 (0) 5 (0) 0 (0) 0 (0)
more than one type of oxygen functionality 29 (4) 31 (4) 2 (0) 2 (0)

Total

236 (32) 479 (32) 335 (51) 318 (51)

11
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Figure 4: Workflow of the multi-task GNN model for predicting DCN, RON, and MON of
hydrocarbons with SMILES strings as input. The model works in a hierarchical manner in
which the outputs of the 1-GNN part are used as inputs for the 2-GNN. The outputs of both,
the 1-GNN and 2-GNN part, are concatenated and represent the molecular fingerprint. This
serves as the input for the three MLP channels predicting the target properties.

4.1 Molecular representation

For generating the representation of molecules that serve as an input to the GNN, SMILES
strings® are transformed into molecular graphs. Each node and each edge is assigned a
feature vector. Each feature is represented as a one-hot encoder with the size of the number of
possible values for this feature and a single entry with value one at the index corresponding to
the value of the feature. The features are selected according to previous literature* 4344 and
are shown in Table 2 and 3 for nodes and edges, respectively. We use RDKit ™ for SMILES
strings transformation and calculation of features. Note that the data set considered in this
work does not include any atoms with sp3d or sp3d2 hybridization. Furthermore, we find
that RDKit encodes stereochemistry exclusively by means of the more general E/Z notation

instead of the cis/trans notation on our data set. The dimensionality of the hybridization

and stereo feature vector could thus be reduced without loss of information.

12
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Table 2: Atomic features used as initial node states, similar to.4%4344 All features are imple-
mented as one-hot encoders.

Feature Description Dimension
atom type type of atom (C, O) 2
is in ring whether the atom is part of a ring 1
is aromatic whether the atom is part of an aromatic system 1
hybridization sp, sp2, sp3, sp3d, or sp3d2 )
# bonds number of bonds the atom is involved in 6
# Hs number of bonded hydrogen atoms 5t

Table 3: Bond features used as edge features, similar to.*434* All features are implemented
as one-hot encoders.

Feature Description Dimension

bond type single, double, triple, or aromatic 4
conjugated whether the bond is conjugated

is in ring whether the bond is part of a ring
stereo none, any, E/Z, or cis/trans

D = =

4.2 Model architecture

The proposed GNN model combines our higher-dimensional GNNs“® with recurrent neural
network architectures. ™™ By using higher-dimensional GNNs, higher-order characteristics
of a molecular graph can be extracted. The recurrent neural networks allow us to share pa-
rameters within the message passing phase of a GNN. We use gated recurrent units (GRUs)
as recurrent neural networks, because GRUs avoid the vanishing gradient problem while
having fewer parameters than long short-term memories (LSTMs) and thus have the po-
tential to generalize faster on small data sets.”™ As illustrated in Figure 4, we apply two
GNN structures in the message passing phase: (i) 1-GNN and (ii) 2-GNN. Thereby, atom
environments in a molecule are first examined locally and then interactions between different
atom environments are studied.

First, in the 1-GNN, an edge feature network and a GRU explore local atomic environ-
ments within the molecular graph. In particular, the updated hidden state in layer [, i.e.,

l .
h,, is computed as

13
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h! = GRU (hf;l, o <ev “hit 4 mg)> , (3)

where the message m! is given by

ml = 3 ANN,, (fE<ew)) - Rt (4)

wEN (v)

Herein, the edge feature network is a feedforward ANN, i.e., ANNy, , that maps edge
features f¥ to a parameter matrix 6,. Then, the parameter matrix 6, is multiplied with
the hidden states of a node’s v neighbors, hi;l with w € N(v), to calculate the message
m. The message is added to the hidden state of the considered node h' ™' multiplied with a
parameter matrix #,,. This result is transformed with an activation function o, here rectified
linear unit (ReLU). By applying a GRU, the updated hidden state in layer [, i.e., hi}, is
finally computed. Note that in this work the hidden states are based on nodes, whereas
Yang et al.** consider hidden states based on edges. The initial hidden states hY = ¥ (v)
are mapped to the dimension of the following hidden states by a shallow ANN with ReLLU
activation.

Secondly, a higher-dimensional message passing process is applied to enable interactions
between atom environments (cf. Section 2.3). By combining the final atom representations
of the 1-GNN into higher-dimensional nodes on which another message passing phase is
applied, long-range effects of atom groups within a molecule can be captured. In this work,
we found a 1,2-GNN architecture to have a lower mean absolute error (MAE) compared to
that of a 1,2,3-GNN or a simple 1-GNN, thus the 1,2-GNN architecture is used to learn
higher-dimensional graph features. Accordingly, we call the hierarchical combination of the
1-GNN and 2-GNN structure 1,2-GNN in the remainder of this work. We update the hidden
states in the 2-GNN message passing similarly to the previously described 1-GNN, except
that the edge feature network is replaced by a simple parameter matrix 65 as there are no

features for edges of the higher-order graph.*® As the 1-GNN is an input to the 2-GNN, the

14
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1,2-GNN indirectly takes the edge features of the original molecular graph into account.
After the message passing process, the model employs sum pooling for aggregating the
hidden node states of the 1-GNN and 2-GNN resulting in two graph representation vectors.
Sum pooling is applied, since the nature of the contribution of atoms and bonds to DCN,
RON, and MON is expected to be additive, similar to in group contribution models. }?13 After
pooling, the two graph representation vectors are concatenated to the molecular fingerprint,
ie., hg = [hl hl |7, Finally, the molecular fingerprint is fed into a deep MLP

Gi_gNN? ""Ga2_gNN

for the prediction of DCN, RON, and MON, p = MLP(hg).

4.3 Single- and multi-task learning

Having several prediction tasks, machine learning models can be trained in single- or multi-
task manner.” ™ In single-task learning, individual models are trained for each task. In
multi-task learning, some representation is shared among the different tasks. For ANNs,
this means that weights and bias parameters of hidden layers are shared between multiple
tasks, i.e., they have equal values. Besides the shared layers, further individual hidden layers
are employed for each task. The shared representation captures general information that
is relevant to all tasks.™ In the individual layers, task-specific information is extracted. In
this way, the model learns more general input representations in the first layers compared
to single-task models and overfitting can be reduced.”™ This is particularly relevant when
the data sets are considerably small. Furthermore, multi-task learning can enable knowledge
transfer between different prediction tasks.” In previous literature, this has been shown to
yield superior results to single-task models in multiple molecular applications. 7677

In our model, we utilize multi-task learning by sharing the graph convolutional layers to
create a general molecular fingerprint on which three individual MLPs (also called channels)
are used for predicting DCN, RON, and MON. As cetane and octane numbers are known to

4,8,12,13,78,79

correlate negatively, multi-task learning is particularly promising in this context.

15



282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

4.4 Transfer learning

Another technique enabling knowledge transfer in machine learning is transfer learning. 393!

In transfer learning, knowledge learned in one domain is transferred to another domain, i.e.,
to the target task.®! One way to perform transfer learning concerns pre-training of ANNs
on a (source) task related to the target task. Afterward, the parameters of the pre-trained
model are used to initialize parameters of a model trained on the target task data. Thus,
transfer learning is particularly relevant for problems where the target data basis is small.

Transfer learning has recently been applied in the context of molecular property prediction
with GNNs. For example, Grambow et al. pre-trained GNNs for thermophysical property
predictions on large data sets from quantum-mechanical calculations and retrained parts of
the GNN on a smaller experimental data set. %

We aim to improve our IQT-DCN prediction by transferring information from additional
(D)CN data, i.e., from measurement techniques other than IQT (cf. Section 3). Thus, we
propose a transfer learning approach, where CN and DCN data from various measurement

setups are utilized for pre-training and then models are retrained on IQT-only DCN data.

4.5 Ensemble learning

Ensemble learning is a technique in machine learning where multiple models are trained
and utilized for a single prediction task.®¥ 8% In most applications, several individual models
are trained independently on a randomly drawn subset of the training data. Then, the
predictions of the individual models are averaged to receive a more accurate prediction. This
way, prediction can be improved as random model errors are averaged out. Averaging single
model predictions is also known as bootstrap aggregating or bagging.®® This is particularly
relevant for models with low bias and high variance which is the case for complex GNNs.
Furthermore, small data sets can lead to high variance.

We train independent GNN models with randomly selected training and validation sets.

To ensure an unbiased model comparison, all models share the same independent test set.
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While some advanced ensembling techniques apply weights to models, e.g., boosting,® we

use a standard bagging technique that applies the same weight to all models.

5 Results and discussion

In this section, we first briefly summarize the general training settings (Section 5.1) and
hyperparameter selection (Section 5.2). Then, we analyze the prediction accuracy of the
proposed model developments: multi-task learning (Section 5.3), transfer learning (Sec-
tion 5.4), and ensemble learning (Section 5.5). Finally, we compare the proposed model to

state-of-the-art QSPR models (Section 5.6).

5.1 General training settings

As described in Section 3, the data set of DCN values extracted from the Compendium of
Experimental Cetane Numbers!! includes DCN measurements of 236 different components
measured with the IQT method. We use this high-quality DCN data set and the RON and
MON data sets for the training of the single and multi-task models (cf. Section 5.3). As
typically done in machine learning, the data sets are standardized to zero mean and standard
deviation of one for each target property, i.e., DCN, RON, and MON. Then, the data sets are
randomly split into a training (85%) and test (15%) set. The test set is separated from the
rest of the data and not used until the final testing of the model. For training the model, an
internal validation set (15% of the original data set) is separated randomly from the training
data and used for early stopping.

For each data point, the molecular graphs are generated as described in Section 4.1.
Then, the model is trained based on the training set. Here, the mean squared error is
used as the loss function. During training, the model performance regarding the internal
validation set is measured in each epoch. The learning rate is decreased by a factor of 0.8

after every 3 consecutive epochs in which the error on the internal validation set did not
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decrease. Training is stopped either after a maximum number of 300 epochs was reached
or if the internal validation error did not decrease in the 50 preceding epochs, according to
early stopping. The error on the internal validation set is also used for comparison of the
different model structures and the selection of hyperparameters. The training and random

selection of the internal validation set are repeated 40 times for all models.

5.2 Hyperparameter selection

The proposed GNN model exhibits several hyperparameters that need to be chosen. To iden-
tify a suitable model architecture, the following hyperparameters are varied within the given
ranges: initial learning rate € {0.0005,0.001,0.005}, hidden states size € {32, 64, 128}, num-
ber of graph convolutional layers € {1,2,3,4,5} for the 1-GNN part and number of graph
convolutional layers € {1,2,3} for the 2-GNN part, and message passing function € {with-
out GRU, with GRU}. To this end, we performed an extensive hyperparameter study on a
preliminary data set with 40 repetitions for each hyperparameter setting. This preliminary
data set is 99.7% identical to our final training data set. The only difference is that we have
corrected two mistakes in SMILES strings that occurred in the automated data processing
and added one new molecule based on new literature that we found. In the hyperparameter
study, we considered the total MAE, i.e., RON, MON, and DCN together, on the validation
set averaged over 40 runs to decide on the final architecture and parameters. Based on these
results, we use message passing with GRU, two graph convolutional layers in the 1-GNN
part, two graph convolutional layers in the 2-GNN part, a hidden states size of 64, and an
initial learning rate of 0.001 for the final model. We note that the differences between dif-
ferent hyperparameter settings are often similar to the variance of the MAE. Therefore, the
sensitivity of the model performance with respect to the hyperparameter selection is rather
weak in our study.

The remaining hyperparameters are described in the following and selected based on

literature and expert knowledge. Trial and error attempts to change these other hyperpa-
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rameters did not lead to improved results. We use atom and bond features as described in
Section 4.1. We apply an edge feature network with three layers and the following number of
neurons: #1: 12 (i.e., number of edge features), #2: 128, #3: 4096 (i.e., number of hidden
state squared). The MLPs constitute five layers with #1: 128, #2: 64, #3: 32, #4: 16, #5:

1 neurons.

5.3 Single- and multi-task learning

The aforementioned model settings were used for single-task and multi-task learning. The
mean absolute errors (MAEs) of the two approaches on their validation and test set are
displayed in Figure 5. The respective box plots illustrate the distribution of MAEs over the
40 individual training runs for each model.

Figure 5 shows that the model performance exhibits a high variance. This is mainly
caused by the small data size for training, validation, and testing. As the validation sets
of the 40 independent model runs are selected randomly, they show a larger variance of
the MAE. In contrast, all 40 independent models share the same test set. Thus, the MAE
distribution on the test set is more narrow. One methodology against high model variance
is bootstrap aggregation which is performed in Section 5.5.

Table 4 summarizes the MAEs on the training, internal validation, and independent test
set averaged over the 40 training runs for comparison. The averaged results show that the
multi-task training approach improves the prediction accuracy on all test sets and for all
predicted properties. For instance, the MAE of the DCN on the test set is reduced by about
17% from 6.4 to 5.3.

The results indicate that the simultaneous learning of DCN, RON, and MON leads to
a better generalization of the graph convolutional layers and thus molecular fingerprint.

One reason for the synergies are believed to be the correlations between DCN, RON, and

MON . 4:812,13,78,79
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Figure 5: Comparison of the MAE of the single-task learning and the multi-task learning
approach on the validation and test sets. The box-plots indicate the lowest and largest
MAE (excluding outliers), the lower and upper quartile, and the median of the MAE over 40
independent model instances. Note that points that are more than 1.5 times the interquartile
range away from the top or bottom of the box are marked as outliers.

5.4 Transfer learning

For the transfer learning approach, we pre-train the single-task DCN model on data from all
different (D)CN measurement methods, i.e., we use (D)CN data of 447 components collected
by Yanowitz et al.!* (cf. Section 3). Then, the learned parameters are used to initialize the
parameters in the graph convolutions and the MLP of the single-task DCN and also the
multi-task model. For the latter, only the parameters of the MLP for predicting the DCN
Table 4: Mean absolute error (MAE) of training, validation, and test set averaged over 40
training runs. The table includes single-task learning (STL), multi-task learning (MTL),

transfer learning (TL), and ensemble learning (EL). Lowest test set errors are highlighted in
bold.

DCN RON MON
Train. Val. Test Train. Val. Test Train. Val. Test
STL 2.7 55 6.4 3.7 70 5.2 3.1 6.0 54
MTL 1.8 51 5.3 2.8 6.7 5.0 2.3 6.1 5.0
STL & TL 2.2 46 6.0 — — — — — —
MTL & TL 1.8 52 5.9 3.2 6.6 5.1 2.6 6.0 4.9
MTL & EL 1.8 4.2 2.8 4.5 2.3 4.4
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are transferred from the pre-training since RON and MON values are not subject to transfer
learning. Finally, we retrain the models by only considering IQT-DCN data.

The results of the transfer learning approach are summarized in Table 4. Transfer learn-
ing improves the MAE of the single-task model for predicting the DCN from 6.4 to 6.0.
For the multi-task model, however, transfer learning does not improve prediction accuracy:
Test MAEs for RON and MON are almost the same with and without transfer learning.
Furthermore, test MAE for DCN even increases from 5.3 to 5.9 with transfer learning. One
possible reason for the poor performance of transfer learning in the multi-task learning is
that the pre-training is essentially a single-task problem because we use only (D)CN data
for pre-training. Thus, the pre-trained model could be biased towards (D)CN which then
could lead to poor generalization of the multi-task model. As a consequence, we do not use

the transfer learning approach for our final model.

5.5 Ensemble learning

After developing a suitable model architecture, model ensembling is applied to address the
observed high variation (cf. discussion in Section 5.3). As described in Section 4.5, ensemble
learning averages the response of multiple models and mitigates random model variations.
Herein, we utilize the previously trained 40 model instances. We perform the ensemble
learning on the multi-task architecture without transfer learning.

The results are summarized in Table 4. They show the averaged MAE on the test set
and the combined training and validation set. The error on a validation set is shown as
part of the training set because the averaged 40 model instances have individual randomly
selected validation sets. Ensemble learning reduces the MAE of the DCN, RON, and MON
significantly from 5.3 to 4.2, from 5.0 to 4.5, and from 5.0 to 4.4, respectively. The bootstrap
aggregation compensates for the previously identified large model variations.

Figure 6 illustrates the parity plots for the independent test set of the proposed ensemble

model. Herein, every point represents the averaged prediction of 40 multi-task models for
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a data point in the test set. The plots show high coefficients of determination for all three
properties, i.e., Ry = 0.94, Rioy = 0.94, and R};oy = 0.89. For the MON, the higher
number of outliers causes a slightly weaker coefficient of determination. Note that the parity

plots show an uneven distribution of the data in the test set. For instance, there exist few

data points with DCN numbers above 100 or RON numbers below 50.
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Figure 6: Multi-task GNN model ensembling: Parity plots for (a) RON, (b) MON, and (c)
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20 5.6 Comparison to recent QSPR models

a1 We compare our GNN model to three recent literature QSPR models for fuel ignition in-

a2 dicator prediction. Our own previous model follows a group contribution and multivariate
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nonlinear regression approach for predicting IQT-DCN.!? The model by vom Lehn et al.?!
combines group contributions and a feed-forward artificial neural network (ANN) to predict
RON. Finally, the model by Kubic et al.'? combines group contributions and a multi-task
feed-forward ANN for simultaneous regression of CN, RON, and MON values.

A fair comparison between the different models is difficult for multiple reasons. First,
models have been developed from different training data sets, leading to different model ap-
plicability domains. This is most evident in case of the model proposed by vom Lehn et al.,3!
which is applicable to alkanes, alkenes, cyclic alkanes, and alcohols only, whereas molecular
diversity of the training data is much higher for our GNN model and the other two models.
Second, different performance evaluation methods, i.e., cross-validation or evaluation on an
independent test set, and different performance metrics, i.e., mean absolute error (MAE) or
coefficient of determination (R?), have been employed, as can be seen from Table 5. Our
procedure for GNN hyperparameter tuning (cf. Section 5.2) follows a cross-validation (CV)
approach, i.e., we repeatedly split the dataset into training and validation sets and use the
average validation set MAE to find the optimal hyperparameter settings. Since CV-MAE
can be a biased estimator of the true prediction error of a model if model parameters are
tuned outside of the CV loop,®” we use an independent test set to estimate the true pre-
diction error. Third, many molecules located in our test set have been used to train the

1.31 Simply

models proposed by Dahmen & Marquardt,® Kubic et al.,'? and vom Lehn et a
rerunning these models on our test set would give them an unfair advantage.
Still, a comparative true prediction performance test can be carried out by exclusively
examining those compounds from our test set that were not included in the respective train-
ing set of a comparison model. This approach results in the four head-to-head comparisons
shown in Tables 6 to 9.
Table 6 compares the DCN predictions made by the GNN model to the predictions made

by our previous DCN model and the measurement values. While both models exhibit a

decent performance, the MAE of the proposed GNN model is lower than the MAE of our
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previous QSPR model (3.6 instead of 5.2). Table 7 shows the comparison between the
GNN model and the RON model by vom Lehn et al.3! Since the latter model is applicable
to alkanes, alkenes, cycloalkanes, and alcohols only, this comparison is based on just four
compounds. The resulting MAEs are roughly similar. Finally, Table 8 and 9 compare
the GNN model to the multi-task ANN model by Kubic et al.,'? where it can be noted
that the MAEs of the GNN model are far lower. In summary, the different head-to-head
comparisons suggest highly competitive performance of the new GNN model. We provide

8 as well as a web front-end

our model, the training scripts, and all data sets open-source*
(www.avt.rwth-aachen.de/gnn) so that others can easily perform their own benchmarks.
Development of QSPR and GNN models differs significantly from each other also from
a conceptual point of view. Most notably, QSPR modeling requires to choose a set of de-
scriptors, e.g., structural group counts, as potential explanatory variables. This step may
facilitate understanding of the prediction problem (the human learns through model devel-
opment) and can encode physical understanding into a tailored model structure. However,
this also means that QSPR models inherently rely on assumptions about the underlying
phenomena, i.e., the descriptors or structural groups of potential value. In contrast, the
presented GNN method is trained in an end-to-end learning approach, as it relies on only
few atomic and bond features (cf. Tables 2 and 3), and thus provides a flexible model struc-
ture that can possibly learn a broad variety of properties. End-to-end learning with graph
convolutions, however, comes at the cost of higher computational effort for training.
Applicability domain (AD) quantification in GNN-based property models is an open
research question, which is closely linked with the question of how well GNNs can gener-
alize. Traditional AD methods used in QSPR modeling, e.g., the Williams plot,5%%° are
not directly transferable to GNNs unless a suitable distance metric for molecular graphs is
established that can be linked to GNN prediction performance. There are some recent works

on autoencoders for molecular graphs® % that might help to derive AD concepts based on

a real-valued latent space identified by the autoencoders. When making predictions with
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our model, we recommend to check from Table 1 whether property data was available dur-
ing model development for the molecular class the compound of interest belongs to. For
instance, from Table 1 it can be seen that no RON/MON data for aldehydes and cyclic
alcohols were available for model training. Whereas it might prove a reasonable assumption
that cyclic alcohols behave similar to acyclic alcohols, we abstain from using our model to

predict RON/MON of aldehydes.

Table 5: Performance comparison of the proposed model to three recent QSPR models.

GNN model Dahmen & Marquardt®®  Kubic et al.'>  vom Lehn et al.3!

method test set test set cross-validation  cross-validation
metric MAE R2 MAE R? MAE R? MAE R?
DCN 42 094 58 0.84 — 0.90 - -
RON 45 094 — — — 0.93 4.0 0.92
MON 4.4  0.89 - - — 0.91 — —

Table 6: Comparison with the IQT-DCN model by Dahmen & Marquardt!® based on those
molecules from our DCN test set that were not included in the training set used by Dahmen
& Marquardt. '3

true value GNN model Dahmen & Marquardt!3

DCN DCN DCN
1,2-dimethylbenzene 8.3 7.4 7.9
furan 7.0 8.2 9.4
methyl erucate 74.2 75.9 87.6
2-heptanol 25.0 24.1 21.5
4-ethyl guaiacol 19.6 17.4 254
1,3,5-triisopropylbenzene 2.8 11.5 10.4
ocimene 28.0 20.1 14.9
1,4-dimethylbenzene 6.2 6.8 7.9
6-undecanone 49.0 59.2 51.8
4-nonanone 43.0 41.3 41.3
mean absolute error (MAE) 3.6 5.2
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Table 7: Comparison with the ANN-based RON model by vom Lehn et al.3! based on those
molecules from our RON test set that were not included in the training set used by vom Lehn
et al.3' Since the model by vom Lehn et al. is applicable to alkanes, alkenes, cycloalkanes,
and alcohols only, this comparison is limited to four compounds.

true value GNN model vom Lehn et al.3!

RON RON RON
methylcyclopropane 102.5 107.1 106.0
2,2-dimethyloctane 49.0 38.6 31.7
1,5-hexadiene 71.1 82.9 86.7
2,4-hexadiene 97.1 91.0 98.6
mean absolute error (MAE) 8.2 9.5

Table 8: Comparison with the ANN model by Kubic et al.'? based on those molecules from
our DCN test set that were not included in the training set used by Kubic et al.'?

true value GNN model Kubic et al.!?

DCN DCN DCN
d-undecalactone 48.6 471 38.6
2-heptanol 25.0 24.1 25.2
4-methoxybenzaldehyde 25.8 12.5 49.7
geraniol 19.3 194 22.5
4-ethyl guaiacol 19.6 174 5.1
ocimene 28.0 20.1 -2.0
dodecyl vinyl ether 101.7 96.0 126.2
propylene glycol monomethyl ether acetate 24.0 24.5 34.2
6-undecanone 49.0 59.2 58.5
mean absolute error (MAE) 4.7 14.0
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Table 9: Comparison with the ANN model by Kubic et al.'? based on those molecules from
our RON & MON test set that were not included in the training set used by Kubic et al.!?

true value GNN model Kubic et al.!?
RON MON RON MON RON MON

methylcyclopropane 102.5  81.2 107.1  87.5 101.1 90.2
furan 108.6  91.6 111.6 103.3 98.9 97.4
aceticacid-2-methylpropylester 108.7 112.3 109.3 107.3 1234 105.6
4-methylcyclohexene 84.1 670 858 66.3 59.2 54.2
tetrahydrofuran 729 648 66.3 49.1 928 87.9
2-octene 56.3  56.5 60.3 60.1 42.3 39.1
1-methylcyclohexene 89.2 721 90.1 71.6  64.3 58.6
2-phenylpentane 103.5  92.1 101.2 91.2 99.8 97.7
2-methylpropanoicacidmethylester 103.6 104.7 109.8 108.1 138.9 108.9
1,5-hexadiene 7.1 376 829  61.7 959 81.7
3-methyl-2-butanone 108.9 102.2 104.7 96.9 111.6 103.0
methyl-2-methylbutanoate 110.5  99.1 108.9 105.1 119.9 104.8
4-octene (trans) 73.3 743 675 672 89.1 88.7
2,4-hexadiene 97.1  80.7 91.0 784 103.3 88.4
allylcyclopentane 52.1 456 685 583 86.0 73.0
mean absolute error (MAE) 5.1 7.0 16.1 13.2

6 Conclusion

Predictive models for fuel ignition quality play a crucial role in the development of novel fu-
els. We propose a data-driven graph neural network (GNN) model for the prediction of three
important fuel auto-ignition indicators, i.e., the derived cetane number (DCN), the research
octane number (RON), and the motor octane number (MON). Our model is applicable to a
wide spectrum of non-oxygenated and oxygenated hydrocarbons, shows competitive perfor-
mance to state-of-the-art models, and can be easily accessed via a web interface.

From the methodological point of view, our GNN-based model offers the advantage that,
in contrast to previous works based on QSPR modeling, no molecular descriptors or struc-
tural groups, have to be selected, because GNNs achieve end-to-end learning from the molec-
ular structure to the properties of interest. While such a data-driven approach is often

believed to require extensively large data sets, this work demonstrates that good model ac-

27



495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

curacies can indeed be achieved for small data sets (order of hundreds) by using multi-task
and ensemble learning. Given the expected future increase in measurement data available
for training, we expect further potential for GNNs in fuel ignition quality prediction. We
provide the corresponding training code and the final model open-source making it a viable
tool for further development. Finally, this work may constitute a prototype for rapid, ver-
satile property prediction beyond DCN, RON and MON and thus for property prediction in

various disciplines.
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