000888712 001__ 888712
000888712 005__ 20210118134514.0
000888712 0247_ $$2doi$$a10.1039/D0LC00711K
000888712 0247_ $$2ISSN$$a1473-0189
000888712 0247_ $$2ISSN$$a1473-0197
000888712 0247_ $$2Handle$$a2128/26715
000888712 0247_ $$2pmid$$a33095214
000888712 0247_ $$2WOS$$aWOS:000592314900007
000888712 037__ $$aFZJ-2020-05147
000888712 082__ $$a540
000888712 1001_ $$0P:(DE-HGF)0$$aTäuber, Sarah$$b0
000888712 245__ $$adMSCC: a microfluidic platform for microbial single-cell cultivation of Corynebacterium glutamicum under dynamic environmental medium conditions
000888712 260__ $$aCambridge$$bRSC$$c2020
000888712 3367_ $$2DRIVER$$aarticle
000888712 3367_ $$2DataCite$$aOutput Types/Journal article
000888712 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1610454872_23480
000888712 3367_ $$2BibTeX$$aARTICLE
000888712 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000888712 3367_ $$00$$2EndNote$$aJournal Article
000888712 520__ $$aIn nature and in technical systems, microbial cells are often exposed to rapidly fluctuating environmental conditions. These conditions can vary in quality, e.g., the existence of a starvation zone, and quantity, e.g., the average residence time in this zone. For strain development and process design, cellular response to such fluctuations needs to be systematically analysed. However, the existing methods for physically imitating rapidly changing environmental conditions are limited in spatio-temporal resolution. Hence, we present a novel microfluidic system for cultivation of single cells and small cell clusters under dynamic environmental conditions (dynamic microfluidic single-cell cultivation (dMSCC)). This system enables the control of nutrient availability and composition between two media with second to minute resolution. We validate our technology using the industrially relevant model organism Corynebacterium glutamicum. The organism was exposed to different oscillation frequencies between nutrient excess (feasts) and scarcity (famine). The resulting changes in cellular physiology, such as the colony growth rate and cell morphology, were analysed and revealed significant differences in the growth rate and cell length between the different conditions. dMSCC also allows the application of defined but randomly changing nutrient conditions, which is important for reproducing more complex conditions from natural habitats and large-scale bioreactors. The presented system lays the foundation for the cultivation of cells under complex changing environmental conditions.
000888712 536__ $$0G:(DE-HGF)POF3-581$$a581 - Biotechnology (POF3-581)$$cPOF3-581$$fPOF III$$x0
000888712 588__ $$aDataset connected to CrossRef
000888712 7001_ $$0P:(DE-HGF)0$$aGolze, Corinna$$b1
000888712 7001_ $$0P:(DE-Juel1)174016$$aHo, Phuong$$b2
000888712 7001_ $$0P:(DE-Juel1)129081$$avon Lieres, Eric$$b3
000888712 7001_ $$0P:(DE-Juel1)143612$$aGrünberger, Alexander$$b4$$eCorresponding author
000888712 773__ $$0PERI:(DE-600)2056646-3$$a10.1039/D0LC00711K$$gVol. 20, no. 23, p. 4442 - 4455$$n23$$p4442 - 4455$$tLab on a chip$$v20$$x1473-0189$$y2020
000888712 8564_ $$uhttps://juser.fz-juelich.de/record/888712/files/2020_09_25%20T%C3%A4uber%20et%20al_marked.pdf$$yPublished on 2020-10-23. Available in OpenAccess from 2021-10-23.$$zStatID:(DE-HGF)0510
000888712 8564_ $$uhttps://juser.fz-juelich.de/record/888712/files/d0lc00711k.pdf$$yRestricted
000888712 909CO $$ooai:juser.fz-juelich.de:888712$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000888712 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174016$$aForschungszentrum Jülich$$b2$$kFZJ
000888712 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129081$$aForschungszentrum Jülich$$b3$$kFZJ
000888712 9131_ $$0G:(DE-HGF)POF3-581$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vBiotechnology$$x0
000888712 9141_ $$y2020
000888712 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-04
000888712 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-04
000888712 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2020-09-04
000888712 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2020-09-04
000888712 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-09-04
000888712 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000888712 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-09-04
000888712 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bLAB CHIP : 2018$$d2020-09-04
000888712 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2020-09-04
000888712 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-04
000888712 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-04
000888712 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG$$d2020-09-04$$wger
000888712 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-09-04
000888712 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bLAB CHIP : 2018$$d2020-09-04
000888712 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2020-09-04$$wger
000888712 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-04
000888712 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-09-04$$wger
000888712 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-04
000888712 9201_ $$0I:(DE-Juel1)IBG-1-20101118$$kIBG-1$$lBiotechnologie$$x0
000888712 980__ $$ajournal
000888712 980__ $$aVDB
000888712 980__ $$aUNRESTRICTED
000888712 980__ $$aI:(DE-Juel1)IBG-1-20101118
000888712 9801_ $$aFullTexts