000888730 001__ 888730
000888730 005__ 20240712113023.0
000888730 0247_ $$2doi$$a10.1002/cctc.202000671
000888730 0247_ $$2ISSN$$a1867-3880
000888730 0247_ $$2ISSN$$a1867-3899
000888730 0247_ $$2Handle$$a2128/26478
000888730 0247_ $$2altmetric$$aaltmetric:87743294
000888730 0247_ $$2WOS$$aWOS:000568065200001
000888730 037__ $$aFZJ-2020-05165
000888730 041__ $$aEnglish
000888730 082__ $$a540
000888730 1001_ $$0P:(DE-HGF)0$$aSebastian, Oshin$$b0
000888730 245__ $$aStable and Selective Dehydrogenation of Methylcyclohexane using Supported Catalytically Active Liquid Metal Solutions – Ga 52 Pt/SiO 2 SCALMS
000888730 260__ $$aWeinheim$$bWILEY-VCH Verlag$$c2020
000888730 3367_ $$2DRIVER$$aarticle
000888730 3367_ $$2DataCite$$aOutput Types/Journal article
000888730 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1607626488_18798
000888730 3367_ $$2BibTeX$$aARTICLE
000888730 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000888730 3367_ $$00$$2EndNote$$aJournal Article
000888730 520__ $$aThe use of gallium‐rich, Supported Catalytically Active Liquid Metal Solution (SCALMS) is a promising new concept to achieve catalysis with atomically dispersed active metal atoms. Expanding our previous work on short alkane dehydrogenation, we present here the application of SCALMS for the dehydrogenation of methylcyclohexane (MCH) to toluene (TOL) using a Ga52Pt alloy (liquid under reaction conditions) supported on silica. Cycloalkane dehydrogenation catalysis has attracted great attention recently in the context of hydrogen storage concepts using liquid organic hydrogen carrier (LOHC) systems. The system under investigation showed high activity and stable conversion of MCH at 450 °C and atmospheric pressure for more than 75 h time‐on‐stream (XMCH=15 %) with stable toluene selectivity (STOL) of 85 %. Compared to commercially available Pt/SiO2, the SCALMS system resulted in higher yields and robustness. Baseline experiments with Pt‐free Ga/SiO2 under identical conditions revealed the decisive influence of Pt dissolved in the liquid Ga matrix.
000888730 536__ $$0G:(DE-HGF)POF3-113$$a113 - Methods and Concepts for Material Development (POF3-113)$$cPOF3-113$$fPOF III$$x0
000888730 588__ $$aDataset connected to CrossRef
000888730 7001_ $$0P:(DE-HGF)0$$aNair, Sharanya$$b1
000888730 7001_ $$0P:(DE-HGF)0$$aTaccardi, Nicola$$b2
000888730 7001_ $$0P:(DE-Juel1)185799$$aWolf, Moritz$$b3
000888730 7001_ $$0P:(DE-HGF)0$$aSøgaard, Alexander$$b4
000888730 7001_ $$0P:(DE-HGF)0$$aHaumann, Marco$$b5
000888730 7001_ $$0P:(DE-Juel1)162305$$aWasserscheid, Peter$$b6$$eCorresponding author
000888730 773__ $$0PERI:(DE-600)2501161-3$$a10.1002/cctc.202000671$$gVol. 12, no. 18, p. 4533 - 4537$$n18$$p4533 - 4537$$tChemCatChem$$v12$$x1867-3899$$y2020
000888730 8564_ $$uhttps://juser.fz-juelich.de/record/888730/files/Stable%20and%20Selective%20Dehydrogenation%20of%20Methylcyclohexane%20using%20Supported%20Catalytically%20Active%20Liquid%20Metal%20Solutions%20%20Ga%2052%20PtSiO%202%20SCALMS.pdf$$yOpenAccess
000888730 909CO $$ooai:juser.fz-juelich.de:888730$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000888730 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)185799$$aForschungszentrum Jülich$$b3$$kFZJ
000888730 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162305$$aForschungszentrum Jülich$$b6$$kFZJ
000888730 9131_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0
000888730 9141_ $$y2020
000888730 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-08-22
000888730 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-08-22
000888730 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000888730 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-08-22
000888730 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCHEMCATCHEM : 2018$$d2020-08-22
000888730 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2020-08-22$$wger
000888730 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-08-22
000888730 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-08-22
000888730 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-08-22
000888730 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000888730 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-08-22
000888730 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-08-22
000888730 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-08-22
000888730 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-08-22
000888730 920__ $$lyes
000888730 9201_ $$0I:(DE-Juel1)IEK-11-20140314$$kIEK-11$$lHelmholtz-Institut Erlangen-Nürnberg Erneuerbare Energien$$x0
000888730 9801_ $$aFullTexts
000888730 980__ $$ajournal
000888730 980__ $$aVDB
000888730 980__ $$aUNRESTRICTED
000888730 980__ $$aI:(DE-Juel1)IEK-11-20140314
000888730 981__ $$aI:(DE-Juel1)IET-2-20140314