001     888730
005     20240712113023.0
024 7 _ |a 10.1002/cctc.202000671
|2 doi
024 7 _ |a 1867-3880
|2 ISSN
024 7 _ |a 1867-3899
|2 ISSN
024 7 _ |a 2128/26478
|2 Handle
024 7 _ |a altmetric:87743294
|2 altmetric
024 7 _ |a WOS:000568065200001
|2 WOS
037 _ _ |a FZJ-2020-05165
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Sebastian, Oshin
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Stable and Selective Dehydrogenation of Methylcyclohexane using Supported Catalytically Active Liquid Metal Solutions – Ga 52 Pt/SiO 2 SCALMS
260 _ _ |a Weinheim
|c 2020
|b WILEY-VCH Verlag
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1607626488_18798
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The use of gallium‐rich, Supported Catalytically Active Liquid Metal Solution (SCALMS) is a promising new concept to achieve catalysis with atomically dispersed active metal atoms. Expanding our previous work on short alkane dehydrogenation, we present here the application of SCALMS for the dehydrogenation of methylcyclohexane (MCH) to toluene (TOL) using a Ga52Pt alloy (liquid under reaction conditions) supported on silica. Cycloalkane dehydrogenation catalysis has attracted great attention recently in the context of hydrogen storage concepts using liquid organic hydrogen carrier (LOHC) systems. The system under investigation showed high activity and stable conversion of MCH at 450 °C and atmospheric pressure for more than 75 h time‐on‐stream (XMCH=15 %) with stable toluene selectivity (STOL) of 85 %. Compared to commercially available Pt/SiO2, the SCALMS system resulted in higher yields and robustness. Baseline experiments with Pt‐free Ga/SiO2 under identical conditions revealed the decisive influence of Pt dissolved in the liquid Ga matrix.
536 _ _ |a 113 - Methods and Concepts for Material Development (POF3-113)
|0 G:(DE-HGF)POF3-113
|c POF3-113
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Nair, Sharanya
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Taccardi, Nicola
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Wolf, Moritz
|0 P:(DE-Juel1)185799
|b 3
700 1 _ |a Søgaard, Alexander
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Haumann, Marco
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Wasserscheid, Peter
|0 P:(DE-Juel1)162305
|b 6
|e Corresponding author
773 _ _ |a 10.1002/cctc.202000671
|g Vol. 12, no. 18, p. 4533 - 4537
|0 PERI:(DE-600)2501161-3
|n 18
|p 4533 - 4537
|t ChemCatChem
|v 12
|y 2020
|x 1867-3899
856 4 _ |u https://juser.fz-juelich.de/record/888730/files/Stable%20and%20Selective%20Dehydrogenation%20of%20Methylcyclohexane%20using%20Supported%20Catalytically%20Active%20Liquid%20Metal%20Solutions%20%20Ga%2052%20PtSiO%202%20SCALMS.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:888730
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)185799
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)162305
913 1 _ |a DE-HGF
|l Energieeffizienz, Materialien und Ressourcen
|1 G:(DE-HGF)POF3-110
|0 G:(DE-HGF)POF3-113
|2 G:(DE-HGF)POF3-100
|v Methods and Concepts for Material Development
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-08-22
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-08-22
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CHEMCATCHEM : 2018
|d 2020-08-22
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2020-08-22
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-08-22
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-08-22
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-08-22
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-11-20140314
|k IEK-11
|l Helmholtz-Institut Erlangen-Nürnberg Erneuerbare Energien
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-11-20140314
981 _ _ |a I:(DE-Juel1)IET-2-20140314


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21