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Abstract

Recent years have shown a great success of deep neural networks. One active �eld of
research investigates the functioning mechanisms of such networks with respect to the
network expressivity as well as information processing within the network.

In this thesis, we describe the input-output mapping implemented by deep neural
networks in terms of correlation functions. To trace the transformation of correlation
functions within neural networks, we make use of methods from statistical physics.
Using a quadratic approximation for non-linear activation functions, we obtain recursive
relations in a perturbative manner by means of Feynman diagrams. Our results yield a
characterization of the network as a non-linear mapping of mean and covariance, which
can be extended by including corrections from higher order correlations.

Furthermore, re-expressing the training objective in terms of data correlations allows
us to study their role for solutions to a given task. First, we investigate an adaptation
of the XOR problem, in which case the solutions implemented by neural networks can
largely be described in terms of mean and covariance of each class. Furthermore, we
study the MNIST database as an example of a non-synthetic dataset. For MNIST,
solutions based on empirical estimates for mean and covariance of each class already
capture a large amount of the variability within the dataset, but still exhibit a non-
negligible performance gap in comparison to solutions based on the actual dataset.
Lastly, we introduce an example task where higher order correlations exclusively encode
class membership, which allows us to explore their role for solutions found by neural
networks.

Finally, our framework also allows us to make predictions regarding the correlation
functions that are inferable from data, yielding insights into the network expressiv-
ity. This work thereby creates a link between statistical physics and machine learning,
aiming towards explainable AI.





Acknowledgements

There are many people to whom I want to extend my gratitude for supporting me
throughout this thesis. First and foremost, I thank Prof. Dr. Moritz Helias for giving me
the opportunity to join his research group at the INM-6 of the Juelich Research Center
for this thesis. Above all, I am grateful for his calm support and encouraging guidance,
the valuable ideas and thoughtful feedback as well as endless insightful discussions. He
has been a great supervisor and essential for bringing this thesis to life.

My gratitude goes to Dr. David Dahmen for his valuable advice and inexhaustible
creativeness. I also want to thank Alexandre René for numerous discussions as well as
his detailed feedback.

I want to thank Prof. Dr. Carsten Honerkamp for hatching the idea for this project
together with Prof. Dr. Moritz Helias and others. Furthermore, he kindly agreed to
act as second reviewer for this thesis.

My deepest gratitude belongs to my best friend Debbora Leip, not only for carefully
reviewing every last sentence of this thesis, but also for her constant support throughout
the past years and in particular for grounding me whenever necessary. In addition, I
thank my brother Jens Fischer for enduring his role as my linguistic reference as well
as putting a �nal touch on my wording.

Finally, I thank all my colleagues at INM-6 for the welcoming and inspiring atmo-
sphere which signi�cantly shaped this entire experience.





Contents

Abstract i

Acknowledgements iii

Introduction 1

I Gaussian Statistics in Neural Networks 5

1 Feed forward network with quadratic activation function 7

2 Transformation of Gaussian statistics within networks 9

2.1 Cumulant transformation by a single network layer . . . . . . . . . . . . 9
2.2 Feynman rules for a quadratic activation function . . . . . . . . . . . . . 12
2.3 Gaussian description of network mapping . . . . . . . . . . . . . . . . . 13
2.4 Results for untrained networks . . . . . . . . . . . . . . . . . . . . . . . 14

3 Binary classi�cation on XOR 18

3.1 Representation of the XOR problem by a Gaussian mixture model . . . 18
3.2 Results for trained networks . . . . . . . . . . . . . . . . . . . . . . . . . 20

4 Network training on Gaussian statistics 25

4.1 Statistical formulation of network loss . . . . . . . . . . . . . . . . . . . 25
4.2 Variance of network loss for �nite datasets . . . . . . . . . . . . . . . . . 26

5 Information coding paradigms for XOR 28

5.1 Covariance coding based on classwise description . . . . . . . . . . . . . 28
5.2 Mean coding based on componentwise description . . . . . . . . . . . . . 33
5.3 Comparison of coding paradigms with network training on data samples 35
5.4 Interim conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6 Classi�cation on MNIST 40

6.1 MNIST database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
6.2 Results for di�erent training methods . . . . . . . . . . . . . . . . . . . . 41

7 Limitations of network training on Gaussian statistics 44

7.1 Construction of the problem of alternating hills . . . . . . . . . . . . . . 44
7.2 Results for di�erent training methods . . . . . . . . . . . . . . . . . . . . 46

v



Contents

II Higher Order Correlations in Neural Networks 51

8 Transformation of higher order statistics within networks 53

8.1 Cumulant transformation by a single network layer . . . . . . . . . . . . 53
8.2 Linear approximation to include higher order data statistics . . . . . . . 54
8.3 Results for untrained networks . . . . . . . . . . . . . . . . . . . . . . . 56

9 Revisiting the performance gap 59

9.1 Classi�cation for the problem of alternating hills . . . . . . . . . . . . . 59
9.2 Classi�cation on MNIST . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

10 Insights into the network expressivity 65

Conclusion and Outlook 69

Bibliography 73

A Appendix 77

A.1 Disorder average for broad networks . . . . . . . . . . . . . . . . . . . . 77
A.2 Approximate series expansion of the ReLU function . . . . . . . . . . . . 78
A.3 Diagrammatic resummation for Gaussian input data . . . . . . . . . . . 79
A.4 Detailed calculations for the variance of the network loss for �nite datasets 80
A.5 Additional plots for binary classi�cation on XOR . . . . . . . . . . . . . 81

vi



Introduction

In recent years, deep neural networks have proven to be powerful tools for a wide range
of applications, from image recognition [1] to playing Go [2]. However, our theoretical
understanding regarding their empirical success is still limited at best. This includes
questions as to what functions they can compute, how they process information or why
they generalize, to name but a few [3]. Especially in �elds such as medicine [4] or
autonomous driving [5], �nding answers to these questions is essential for developing
reliable tools.

One major branch in machine learning is supervised learning, which addresses learn-
ing an input-output mapping from examples. If the possible output values are given
by a �nite set, this task is referred to as classi�cation [6]. Many common problems are
formulated in this way: In image classi�cation, images are assigned to class labels such
as `cat' or `dog' based on their pixel representation. In automated medical diagnosis,
medical data such as EEG recordings are analyzed with respect to possible anomalies
and indications for diseases [7, 8, 9]. To arrive at a transparent decision-making process,
a more profound understanding regarding the functional principles of neural networks
and their extraction of meaningful features from given data is required.

The objective of classi�cation is to minimize an error measure between the correct
class label and the prediction made by the neural network with respect to the joint
probability distribution of data samples and class labels [3]. Thus, training dynamics
and consequently the solution strategy implemented by the network depend on this
probability distribution and more precisely the information encoded in it. In this con-
text, processing of data samples by the network amounts to a transformation of the
input distribution. The classi�cation objective can then be reformulated as �nding a
transformation for which the distribution of the network output is strongly concentrated
at the assigned target values for each class, reminiscent of a superposition of Dirac delta
functions.

In this thesis, we study the transformation of the data distribution by the network to
obtain insights into how the solution strategy found by the network employs information
encoded in this distribution. Typically, a distribution is given in terms of its probability
density function. However, the probability density function assigns a certain value to
each input, thereby giving a priori a local description of the input data. In consequence,
it can be di�cult to discern global properties of a given class. Furthermore, the data
distribution might not even have a mathematical representation in terms of a probability
density function. Therefore, we exploit the fact that we can fully describe a distribution
by its data statistics or cumulants, also referred to as connected correlation functions
[10]. In this context, tracing how the input distribution is transformed by a deep neural
network amounts to decomposing the network mapping into correlation functions.

A key element for the expressivity of neural networks is the application of a non-
linear activation function at intermediate network layers. Seminal works have shown

1



that multi-layer feed forward networks can approximate any continuous function as long
as the activation function is not a polynomial [11, 12, 13]. To study the transformation of
cumulants by a non-linear activation function, we express the corresponding cumulant-
generating function using Feynman diagrams, which is a well-established method from
statistical physics [14].

Regarding the information contained in the cumulants of the data distribution, the
two lowest order cumulants are easily interpretable as they are given by mean and
covariance. In the special case of a Gaussian distribution, these already de�ne the
distribution and, accordingly, all higher order cumulants beyond mean and covariance
vanish. In the case of a general distribution, cumulants of arbitrary orders need to be
taken into account for an exact description of the distribution [15]. However, we cannot
take into account cumulants of arbitrary order, which raises questions regarding the
information encoded in a cumulant of a certain order as well as their relative in�uence
on the network mapping.

Furthermore, the exact probability distribution of data samples and class labels is
generally not accessible. Instead, the error measure used during training is determined
as an empirical estimate based on pairs of a data sample and corresponding class label
[16]. Accordingly, we can determine empiric estimates for the cumulants of the data
distribution. For classi�cation tasks such as image recognition, the empirical mean of
each class can be interpreted as a representative for this class and the corresponding
covariance as an initial estimate of the variability within that class. Depending on
the particular task, these quantities might already encode class membership to a large
extent. Therefore, we will initially constrain our considerations to studying how mean
and covariance are transformed by a neural network. This approach corresponds to
approximating the distribution of the network input as a Gaussian mixture model with
one component for each class.

With regard to the internal representation of deep neural networks, an established
line of research studies the case of in�nitely wide neural networks for which an exact
equivalence to Gaussian processes exists [17, 18, 19]. By applying the central limit the-
orem at intermediate network layers, a prior over possible network mappings is derived
based on the initial distribution of network parameters. This result allows Bayesian
prediction with deep neural networks [19]. In contrast to this previous work, here we
do not study the distribution with respect to the network parameters, but with respect
to the data samples. Nevertheless, we can take a similar approach by assuming the
activations at intermediate layers to be self-averaging and thus applying a disorder av-
erage for the cumulant-generating function with respect to the network parameters. As
a result, higher order cumulants scale down with the network width. Therefore, we will
initially restrict our considerations to mean and covariance.

Accordingly, this thesis is divided into two parts: In Part I, we study how feed
forward networks with a quadratic activation function (see Chapter 1) transform Gaus-
sian data statistics. We assess the accuracy of the resulting network description for
networks with randomly sampled parameters (see Chapter 2) as well as for networks
that have been trained to solve an adaptation of the XOR problem (see Chapter 3).
By re-expressing the error measure used during training in terms of the data statistics
of the network input (see Chapter 4), we can study how these quantities drive network
training and are processed by the network (see Chapter 5). Furthermore, we apply this
method to the MNIST database as an example of non-synthetic data (see Chapter 6)
and explore limitations of such a Gaussian description of the network mapping (see
Chapter 7).
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In Part II, we investigate the in�uence of higher order correlations in the input
distribution as well as the network mapping (see Chapter 8). Based on these consider-
ations, we study both implications and limitations of an accordingly adapted network
description (see Chapter 9). Lastly, we explore how the network expressivity relates to
the information contained in data statistics of di�erent orders (see Chapter 10).
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Part I

Gaussian Statistics in Neural

Networks
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1 Feed forward network with quadratic

activation function

In this thesis, we use feed forward networks which process data in a hierarchical manner
as they are functionally structured into layers. Each layer performs an a�ne linear
transformation which is de�ned by a weight matrix W l ∈ RNl×Nl−1 and a bias vector
bl ∈ RNl , followed by the pointwise application of a function φ : R→ R which is called
activation function. Here, Nl de�nes the width of layer l and we use the convention
N−1 = din with din being the dimensionality of the network input x ∈ Rdin . The total
number of such non-linear layers within a network is called the network depth L.

(a)

≈ −1.21
α − 1

2α
0 1

2α

z

− 1
4α

0

φ
(z

)

(b)
ReLU(z)

z+αz2

Figure 1: (a) Schematic representation of a network layer l. (b) The ReLU func-
tion (blue) can be approximated by the quadratic activation function (red) de�ned in
(3). The range for which this approximation is applicable (dark gray) depends on the
strength α of the quadratic term.

In addition, we use a purely linear readout layer as this choice allows for the applica-
tion of the disorder average (see Appendix A.1) to the network output, which facilitates
its theoretical description. Thus, the overall network mapping gθ : Rdin → Rdout is given
by

zli = (W l yl + bl)i,

yl+1
i = φ

(
zli
)
,

}
for l = 0, . . . , L− 1 (1)

zLi = (WL yL + bL)i, (2)

where we set y0 = x and denote the set of network parameters as θ={W l,bl}l=0,...,L.
For each layer, zl and yl are referred to as pre- and post-activations, respectively (see
Fig. 1(a)).
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The network output is given by gθ(x) = zL and consequently, we have NL = dout
with dout being the dimensionality of the network output. Since we mostly consider
classi�cation tasks with binary class labels, we set dout = 1 unless speci�ed otherwise.
Additionally, we use a �xed width for all intermediate layers, so that Nl = N for
l = 0, . . . , L− 1, which we henceforth refer to as the network width N .

Common choices for the activation function are the hyperbolic tangent or the recti-
�ed linear unit function ReLU, which is de�ned as ReLU(z) := max(0, z), due to their
good performance and generalization capabilities [20]. Instead, in this work we use a
quadratic activation function de�ned as

φ(z) := z + α z2, (3)

where α determines the strength of the quadratic term.
This choice of activation function represents the most fundamental instance of a non-

linear function and, unlike many common activation functions, is suitable for theoretical
analysis. Under the assumption that α is small, a quadratic activation function can
further be seen as an approximation of the ReLU function for values close to zero,
as illustrated in Fig. 1(b). This relation can also be derived by performing a Taylor
expansion of ReLU(z) around zero (see Appendix A.2). In the following, the activation
function φ (z) is always assumed to be a quadratic function as given in (3) unless
speci�ed otherwise.
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2 Transformation of Gaussian statis-

tics within networks

We �rst study how the distribution of the input data is transformed by a network in
terms of the corresponding cumulants. Based on the assumption that for classi�cation
tasks, a large amount of the relevant information is contained in mean and covariance
of each class, in this section we constrain our considerations to the case of Gaussian
distributed input data.

We �rst analytically derive expressions that describe how mean and covariance of the
data distribution are transformed by each network layer (see Section 2.1). These results
can also be obtained using a graphical notation for the occurring algebraic terms, leading
to Feynman diagrams (see Section 2.2). Based on the disorder average in Appendix A.1,
we obtain a description of the network as a non-linear mapping of mean and covariance
(see Section 2.3). We then compare our theoretical results with empirical estimates
of the distribution obtained from data samples in the case of untrained networks (see
Section 2.4).

2.1 Cumulant transformation by a single network layer

Since our goal is to study the transformation of cumulants by a single network layer,
we drop the layer index l in this section. We further denote the layer input as x ∈ RNin

to avoid ambiguity and assume it to be Gaussian distributed with x ∼ N (µx,Σx).
The cumulant-generating function Wz for the pre-activations z = W x + b is given

by

Wz(j) = ln
〈

exp
(
jTz
)〉

z
(4)

and follows directly from its counterpart Wx for the layer input as

Wz(j) = ln
〈

exp
(
jTz
)〉

z

= ln
〈

exp
(
jTW x+ jTb

)〉
x

= ln
〈

exp
([
WTj

]T
x
)〉

x
+ jTb

=Wx

(
WTj

)
+ jTb.

The above result imposes relations for the cumulant G
(n)
z of order n, yielding

G
(n)
z, (r1,...,rn) =

∂n

∂jr1 . . . ∂jrn
Wz(j)

∣∣∣∣
j=0

(5)
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2.1. Cumulant transformation by a single network layer

=


∑
s1

wr1s1 G
(1)
x, (s1) + br1 for n = 1,∑

s1,...,sn

wr1 s1 . . . wrn sn G
(n)
x, (s1,...,sn) else.

(6)

As expected, these relations take the form of tensor transformations, given that cumu-
lants behave like symmetric tensors.

Since the layer input x is assumed to be Gaussian distributed, we have G
(n≥3)
x = 0

and the above expressions simplify to

µz = G(1)
z = W µx + b, (7)

Σz = G(2)
z = W ΣxW

T, (8)

G(n≥3)
z = 0. (9)

If the resulting covariance matrix Σz = W ΣxW
T is non-degenerate for W ∈ RNout×Nin

with Nout ≤ Nin, it follows directly that the pre-activations z are also Gaussian dis-
tributed with mean and covariance as above.

If for Nout ≤ Nin, the covariance matrix Σz is degenerate, or if Nout > Nin, the a�ne
linear transformation z = W x + b maps to a subspace V ⊂ RNout . This subspace is
spanned by the eigenvectors of W ΣxW

T with positive eigenvalues, while all remaining
eigenvectors correspond to eigenvalue zero. In consequence, the probability of any
point z that does not lie within this subspace is zero and the average 〈◦〉z is e�ectively
determined with respect to V as

〈◦〉z =

∫
RNout

dz ◦ pz(z) (10)

=

∫
V

dz ◦ p̃z(z). (11)

Here, p̃z(z) refers to the marginal distribution of pz(z) with respect to the orthogonal
complement V ⊥ and is given by a Gaussian distribution. In the following, we write
z ∼ N (µz, Σz) in all cases but keep this property in mind.

In the case of the quadratic activation function φ(z), the cumulant-generating func-
tion Wy of the post-activations y is given by

Wy(j) = ln
〈

exp
(
jTy
)〉

y
(12)

= ln

〈
exp

(
jTz + α

∑
r

jr z
2
r

)〉
z∼N (µz ,Σz)

. (13)

By de�ning Jrs (j) := 2α jr δrs, we can rewrite

exp
(
Wy(j)

)
=

〈
exp

(
jTz +

1

2
zTJz

)〉
z∼N (µz ,Σz)

=
(
(2π)N det(Σz)

)− 1
2

∫
dz exp

(
jTz +

1

2
zTJz

)
exp

(
− 1

2

(
z − µz

)T
Σ−1
z

(
z − µz

))
=
(
(2π)N det(Σz)

)− 1
2

∫
dz exp

(
− 1

2
zT
(
Σ−1
z − J

)
z +

(
j + Σ−1

z µz
)T
z − 1

2
µTz Σ−1

z µz

)
= det (1− ΣzJ)−

1
2 exp

(
− 1

2
µTz Σ−1

z µz

) 〈
exp

((
j + Σ−1

z µz
)T
z
)〉

z∼N(0, (Σ−1
z −J)−1)

10



2.1. Cumulant transformation by a single network layer

which gives

Wy(j) =− 1

2
ln det (1− ΣzJ) − 1

2
µTz Σ−1

z µz

+ ln
〈

exp
((
j + Σ−1

z µz
)T
z
)〉

z∼N(0, (Σ−1
z −J)−1)

.
(14)

The latter term corresponds to the cumulant-generating function Wz

(
j̃
)
of a Gaussian

distribution for j̃ = j + Σ−1
z µz, so that we obtain

Wy(j) =− 1

2
ln det (1− ΣzJ)− 1

2
µTz Σ−1

z µz

+
1

2

(
j + Σ−1

z µz
)T (

Σ−1
z − J

)−1 (
j + Σ−1

z µz
)
.

(15)

From the series expansion of the logarithm ln(1− x) = −
∞∑
r=1

xr

r , it follows

−1

2
ln det (1− ΣzJ) = −1

2
tr ln (1− ΣzJ) (16)

=
1

2
tr
∞∑
r=1

(
ΣzJ

)r
r

. (17)

Furthermore, we can write (
Σ−1
z − J

)−1
= Σz

(
1− J Σz

)−1
(18)

= Σz

∞∑
r=0

(
J Σz

)r
. (19)

Combining the above equations and taking the derivative, we get

G
(n)
y, (r1,...,rn) =

∑
S(r1, ..., rn)

{ 1

2n
(2α)n Σz, r1r2 . . .Σz, rnr1

+
1

2
(2α)n−2 Σz, r1r2 . . .Σz, rn−1rn δn6=1

+
1

2
(2α)n µz, r1 Σz, r1r2 . . .Σz, rn−1rn µz, rn

+ (2α)n−1 µz, r1 Σz, r1r2 . . .Σz, rn−1rn

}
,

(20)

where the sum comprises all permutations of the indices r1, . . . , rn. For mean and
covariance of the post-activations y, we obtain

µy, r = µz, r + α (µz, r)
2 + αΣz, rr, (21)

Σy, rs = Σz, rs + 2α (µz, r Σz, rs + µz, s Σz, sr)

+ 2α2 Σz, rs Σz, sr + 4α2 µz, r Σz, rs µz, s.
(22)

In particular, these expressions show that the quadratic activation function φ(z) couples
mean and covariance in a non-linear manner.
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2.2. Feynman rules for a quadratic activation function

2.2 Feynman rules for a quadratic activation function

The analytical derivation of expressions for the cumulants of the layer output in the
case of a quadratic activation function relies entirely on the fact that we perform an
average with respect to a Gaussian distribution. For arbitrary distributions, we need
to apply a perturbative approach using Feynman diagrams. This method furthermore
allows us to gain a di�erent understanding regarding the functional structure of the
obtained expressions. Feynman diagrams are composed of various graphical elements
corresponding to the occurring algebraic terms, while their assembly is governed by
several rules regarding the topological features of the diagrams [14].

The graphical elements that are used in this thesis are shown in Tab. 1. As an
addition to commonly used notations, we introduce a two-point interaction vertex (`α-
vertex') to account for the term α jr z

2
r in (13). Accordingly, this two-point interaction

vertex directly depends on the external source j.

meaning algebraic term graphical representation

α-vertex

two-point interaction vertex
with �xed external line

α jr δrs δrt
jr

zt

zs

external line jr δrs
jr zs

cumulant vertex with
n internal lines

G
(n)
z, (r1,..., rn)

. . .

zr1

zrn

Table 1: Diagrammatic rules for the perturbative expansion ofWy (j) with y = z+α z2.

Feynman diagrams for Gaussian distributed layer input

To provide an insight into the use of Feynman diagrams, we �rst examine how the ex-
pressions in (21) and (22) from the previous section can be derived using this method.
For a cumulant G(n) of order n, we need to determine all diagrams with n external lines.
External lines occur either independently or originate from an α-vertex. Furthermore,
they always need to be connected to a cumulant vertex, but cannot be connected to
one another. According to the linked cluster theorem, only connected diagrams are con-
tributing to cumulants, thus reducing the number of diagrams that need to be considered
[14].

By applying these rules, we get the following diagrammatic contributions to mean
and covariance of the post-activations y:

12



2.3. Gaussian description of network mapping

µy, r = µz, r + α (µz, r)
2 + αΣz, rr

= + +

(a) (b) (c)

(23)

Σy, rs = Σz, rs + 4α2 µz, r Σz, rs µz, s + 2α2 (Σz, rs)
2 + 2αΣz, rs (µz, r + µz, s)

= + + +

(a) (b) (c) (d)

(24)
The diagrams (23)(a) and (24)(a) result from the linear term in the activation function
φ(z) while the others result from its quadratic part. Since the pre-activations z are
Gaussian distributed, only cumulant vertices with one or two internal lines appear here.
As expected, the corresponding algebraic expressions yield the same results for mean
and covariance of the layer output as in the previous section.

From the fact that we are able to derive exact expressions for cumulants of arbitrary
order in Section 2.1, it follows that we can perform a resummation of certain diagram
components. This yields a compact diagrammatic formulation of the expressions in (20)

for the cumulants G
(n)
y of the post-activations y. For details, see Appendix A.3.

2.3 Gaussian description of network mapping

With the results derived in Section 2.1, we can describe the network as a non-linear map-
ping of mean and covariance of the input data to mean and covariance of the network
output. This description builds on the disorder average (see Appendix A.1) according
to which higher order cumulants beyond mean and covariance that are generated at
intermediate layers scale down with the network width N . This result assumes the net-
work parameters to be independent and identically distributed. In the case of untrained
networks, we can thus approximate the distribution at intermediate layers as well as
the distribution of the network output as Gaussian.

Based on these results, we determine theoretical values for mean and covariance of
the network output zL iteratively as

µzl, r = (W l µyl + bl)r,

µyl+1, r = µzl, r + α (µzl, r)
2 + αΣzl, rr

}
for l = 0, . . . , L− 1 (25)

µzL, r = (WL µyL + bL)r, (26)

Σzl, rs =
(
W l Σyl (W l)T

)
rs
,

Σyl+1, rs = Σzl, rs + 2α
(
µzl, r Σzl, rs + µzl, s Σzl, sr

)
+ 2α2 (Σzl, rs)

2 + 4α2 µzl, r Σzl, rs µzl, s

 for l = 0, . . . , L− 1 (27)
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2.4. Results for untrained networks

ΣzL, rs =
(
WL ΣyL (WL)T

)
rs
. (28)

The resulting values µzL, theo. = f̂µ
(
µx, Σx; θ

)
and ΣzL, theo. = f̂Σ

(
µx, Σx; θ

)
for mean

and covariance of the network output are given as functions of mean µx and covariance
Σx of the network input as well as the network parameters θ.

For a network of depth L = 1 with a single non-linear layer, the above expressions
are exact whereas for L > 1, they yield approximations based on the disorder average.
Therefore, their accuracy is expected to increase with the network width N .

2.4 Results for untrained networks

To assess the accuracy of the above approximations, we compare the empirical distribu-
tion of the network output with the resulting theoretical values for networks of di�erent
depth L and width N . In this section, we consider the case of untrained networks. As
input we use data samples drawn from a two-dimensional Gaussian distribution with

µx =

 0.4

0.4

 and Σx =

 0.05 0

0 0.05

, (29)

so that din = 2. The distribution of data samples is visualized in Fig. 2(a).
We choose a strength of α = 0.5 for the quadratic part of the activation function

φ(z). The network parameters θ = {W l, bl}l=0,...,L are initialized according to the
assumptions made for the disorder average (see Appendix A.1). Therefore, these are

drawn according to wlrs
i.i.d.∼ N

(
0, σ

2
w

Nl−1

)
and blr

i.i.d.∼ N
(
0, σ2

b

)
for all layers l, where we

set σw = σb = 0.75.
For a network of depth L = 1, the theoretical values for mean and covariance

are µzL, theo. = −1.379 and ΣzL, theo. = 0.264 (see Eq. (25)-(28) in Section 2.3). We
calculate empirical estimates for these quantities using the network output of D = 104

data samples, yielding µzL, emp. = −1.383 ± 0.005 and ΣzL, emp. = 0.268 ± 0.004 which
lie in the range of one standard error from the theoretical values. Furthermore, the
resulting probability density function shown in Fig. 2(b) agrees well with its empirical
counterpart, which we obtain as a normalized histogram of the network output for this
dataset. These results are in line with expectations, since for a single non-linear layer
the expressions for mean and covariance are exact.

We want to measure the overall accuracy of the probability density functions ob-
tained from our theory relative to the empirical counterparts. In this context, a com-
parison of the absolute values of mean and covariance can only serve as a check for the
validity of the expressions in Section 2.3. However, such a comparison does not capture
properties of the distribution that are contained in higher order cumulants. Further-
more, it is not clear how di�erences in higher order cumulants are to be interpreted or
how such di�erences for di�erent orders can be combined to yield a sensible comparison
with respect to the overall distribution.

Therefore, we use the Kullback-Leibler divergence as an accuracy measure, which
was �rst introduced by Kullback and Leibler in 1951 [21]. For two probability density
functions ρ(z) and η(z), it is given as

DKL(ρ‖η) =

∫
dz ρ(z) [ln ρ(z)− ln η(z)] (30)

= −H(ρ) +H(ρ, η), (31)
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2.4. Results for untrained networks
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Figure 2: (a) Distribution of network input x ∈ R2. Data samples are drawn from the
Gaussian distribution de�ned in (29). For illustrative purpose, we show a subset of 103

data samples of the full dataset of sizeD = 104 and constrain the depicted area in such a
way that the majority of data samples is shown. (b) Distribution of the network output
zL ∈ R for a network of depth L = 1 and width N = 10. A normalized histogram (blue)
of the network output for the full dataset of size D = 104 acts as an empirical estimate
of the probability density function. Its theoretical counterpart is given as a Gaussian
distribution (black) with mean and covariance calculated according to Section 2.3.

where H(ρ) is the entropy of ρ(z) and H(ρ, η) is the cross-entropy between ρ(z) and
η(z). The Kullback-Leibler divergence can be interpreted as a measure of the expected
number of additional bits needed to encode samples drawn from ρ(z) when using a code
optimized for η(z), in comparison to a code optimized for ρ(z) [22]. In that context,
η(z) is considered to be an approximation of the true distribution ρ(z).

Since we want to assess the accuracy with regard to our theoretical description, we
choose ρ(z) = pzL, emp.(z) and η(z) = pzL, theo.(z). To obtain a dimensionless quantity,
we further divide the Kullback-Leibler divergence by the entropy of pzL, emp. and denote
the resulting quantity as

D̂KL(pzL, emp.‖pzL, theo.) =
DKL(pzL, emp.‖pzL, theo.)

H(pzL, emp.)
. (32)

Accordingly, it describes the relative increase in the expected number of additional
bits needed. In the above example for L = 1, we have D̂KL(pzL, emp.‖pzL, theo.) =
0.2%, quantifying the good agreement between theoretical and empirical distribution in
Fig. 2(b).

Since for deeper networks the expressions for mean and covariance of the network
output represent approximations based on the disorder average, we expect larger devi-
ations between theory and simulation. As an example, we consider a network of depth
L = 4 and width N = 10. The obtained results are given in Tab. 2. While the mean
values still lie in the range of one standard error of one another, the covariance values
di�er in the order of two standard errors. When comparing the probability density
functions obtained from theory and simulation in Fig. 3(a), the histogram is noticeably
skewed, which cannot be captured by a Gaussian description of the network output cor-
responding to theory. This e�ect results from higher order cumulants beyond mean and
covariance becoming non-negligible and is also re�ected in the relative Kullback-Leibler
divergence D̂KL(pzL, emp.‖pzL, theo.) = 1.0%.

According to the disorder average, we expect these deviations to decrease for broader
network architectures. For a network of depth L = 4 andN = 100, the theoretical values
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Figure 3: Distribution of the network output zL ∈ R for networks of depth L = 4 and
width N = 10 (a) or N = 100 (b). A normalized histogram (blue) of the network
output for a dataset of size D = 104 acts as an empirical estimate of the probability
density function. Its theoretical counterpart is given as a Gaussian distribution (black)
with mean and covariance calculated according to Section 2.3.

Network architecture µzL, theo. µzL, emp. ΣzL, theo. ΣzL, emp.

L = 1, N = 10 [100] −1.379 −1.383± 0.005 0.264 0.268± 0.004

L = 4, N = 10 [10−3] 30.8 31.2± 0.5 2.48 2.54± 0.04

L = 4, N = 100 [10−3] −146.0 −146.2± 0.6 4.23 4.31± 0.07

Table 2: Theoretical values and empirical estimates for mean and covariance of the
network output zL for di�erent network architectures.

for mean and covariance of the network output (see Tab. 2) show a decrease in devi-
ation between theory and simulation. In particular, the skewness of the histogram in
Fig. 3(b) is signi�cantly reduced. The theoretical and empirical curves for the probabil-
ity density function show an improved agreement both qualitatively and quantitatively
with D̂KL(pzL, emp.‖pzL, theo.) = 0.5%.

The above results apply to instances of di�erent network architectures for a partic-
ular set of network parameters θ. To check whether the discussed e�ects appear consis-
tently, we determine the relative Kullback-Leibler divergence D̂KL(pzL, emp.‖pzL, theo.)
averaged over networks initialized on nseeds = 103 di�erent seeds. For consistency, in
all cases the same dataset as above is used as network input. In line with expectations,
the deviations increase with the network depth L while decreasing with the network
width N (see Fig. 4(a)). This e�ect is consistent across di�erent network realizations as
can be seen from the magnitude of the obtained standard errors shown in Fig. 4(b) and
(c). The results for depth L = 4 suggest that the relative Kullback-Leibler divergence
approaches a plateau for larger network widths N . This would translate to the accu-
racy of the expressions for mean and covariance of the network output being limited for
deeper networks, presumably due to the approximations made.
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Figure 4: Relative Kullback-Leibler divergence for di�erent network architectures, av-
eraged over networks that are initialized on nseeds = 103 di�erent seeds. In (a), the
resulting mean values are depicted. In (b) and (c), mean and corresponding standard
error are shown for varying network depth L and width N , respectively.
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3 Binary classi�cation on XOR

In the previous chapter, we investigated how mean and covariance of the input distri-
bution are transformed by neural networks and assessed the accuracy of our theoretical
description for networks with randomly sampled parameters. As a next step, we apply
our method to networks that have been trained to solve a given task, with the network
parameters having been adjusted accordingly.

In this chapter, we use an adaptation of the exclusive or (XOR) problem, a classical
problem in machine learning. In its original formulation, the objective is to predict the
output of the XOR logic gate given two binary inputs [23]. Since this problem is not
linearly separable, it requires the use of a non-linear activation function. Therefore, it
allows us to study the in�uence of a non-linear term on the solution strategy chosen by
the network, as opposed to using purely linear networks.

To stay in the context of continuous probability distributions, we use real-valued
instead of binary inputs and formulate the XOR problem as a classi�cation task (see
Section 3.1). We then study the accuracy of the Gaussian network description in Sec-
tion 2.3 for networks trained on this task (see Section 3.2).

3.1 Representation of the XOR problem by a Gaussian

mixture model

We construct a dataset for the XOR problem using samples drawn from a Gaussian
mixture model. In general, the probability density function of a Gaussian mixture model
for x ∈ Rdin is given by a superposition of M Gaussian distributions

pGMM(x) =

M∑
m=1

πmN (x|µmx , Σm
x ), (33)

where N (x|µmx , Σm
x ) denotes a Gaussian probability density function with mean µmx and

covariance Σm
x for m = 1, . . . ,M . Each mixture component m is scaled by a mixture

weight πm. The mixture weights obey

M∑
m=1

πm = 1, (34)

to ensure that the resulting probability density function is properly normalized [6].
The XOR problem is formulated as a binary classi�cation task, meaning the data

samples belong to two classes. We assign each mixture component m a class label
tk ∈ {0, 1} belonging to class k. Each data sample x(d) is then assigned a target label
t(d) ∈ {0, 1} corresponding to the mixture component it is drawn from. Here, the
superscript d refers to the sample index.
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3.1. Representation of the XOR problem by a Gaussian mixture model
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Figure 5: Distribution of data samples x ∈ R2 for the XOR problem. Data samples are
drawn from the Gaussian mixture model de�ned in (35)-(37) with class labels tk ∈ {0, 1}
(blue, red) assigned accordingly. For illustrative purpose, we show a subset of 103 data
samples of the full dataset of size D = 104 and constrain the depicted area in such a
way that the majority of data samples is shown. The optimal decision boundaries for
solving the task (black lines) coincide with the axes.

For our adaptation of the XOR problem, we choose M = 4 components and assign

t = 0 : µm=1, 2
x = ±

 −0.4

0.4

 Σm=1, 2
x =

 0.05 0

0 0.05

 , (35)

t = 1 : µm=3, 4
x = ±

 0.4

0.4

 Σm=3, 4
x =

 0.05 0

0 0.05

 , (36)

with all components being equally weighted

πm =
1

M
= 0.25 for m = 1, . . . , 4. (37)

Each classwise probability density function pt, x(x) is then given as a superposition of
the respective mixture components m′

pt, x(x) =
∑
m′

πm′ N (x|µm′x , Σm′
x ). (38)

The resulting data distribution is visualized in Fig. 5.

Theoretical performance limit

For a network with parameters θ, we aim at maximizing the classi�cation accuracy or
performance Pθ. This quantity is de�ned as the amount of correctly classi�ed data
samples relative to the total number of data samples

Pθ =
# correctly classi�ed data samples

# data samples
. (39)

For our adaptation of the XOR problem, the overlap between the probability den-
sity functions of di�erent mixture components implies a theoretical upper limit of the
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3.2. Results for trained networks

achievable performance. This limit serves as a baseline when training any network on
a dataset that is drawn from the distribution de�ned in (35)-(37). Given the classwise
probability density functions pt, x(x), the classi�cation accuracy is maximized by as-
signing any point x ∈ Rdin to the class label corresponding to the higher probability.
Consequently, the optimal decision boundaries for a binary classi�cation task are de-
�ned by the condition pt=0, x(x) = pt=1, x(x). Due to the symmetry of the problem, the
optimal decision boundaries for our adaptation of the XOR problem coincide with the
axes, corresponding to xi = 0 for i = 1, 2, as illustrated in Fig. 5.

We determine the expected value of the theoretical performance limit using the
cumulative distribution function Φ0, 1(x) of the standard normal distribution and start
by considering each component separately. Any point drawn from the componentm = 1
that lies either in the lower left or upper right quadrant will be misclassi�ed. The
probability mass of component m = 1 located in the other two areas yields the minimal
expected classi�cation error εm=1 for this component. In each dimension, the probability

mass located beyond a single axis is given by 1 − Φ0, 1

(
0±0.4√

0.05

)
= 3.68%. Taking into

account the geometry of the problem, we thus get

εm=1 = 2 ·
[
1− Φ0, 1

(
0± 0.4√

0.05

)]
· Φ0, 1

(
0± 0.4√

0.05

)
≈ 7.1%.

Since the distribution is symmetric and all components are equally weighted, this re-
sult directly corresponds to the minimal expected cumulative classi�cation error Emin,
yielding a maximum of Pmax = 92.9% for the achievable performance.

3.2 Results for trained networks

During training, we minimize an estimator of the classi�cation error Eθ. For network
input x, we use the mean squared error between the network output gθ(x) and the cor-
responding target label t as loss function so that `(x, t; θ) = ‖gθ(x)− t‖2. To improve
training dynamics, we randomly subdivide the full training dataset into disjoint subsets
or batches {Bβ}β=1,...,Dtrain/B of B data samples so that Bβ = {(x(b), t(b))}b=1,...,B ⊂
{(x(d), t(d))}d=1,...,Dtrain

. Here, B and Dtrain denote the batch size and the size of the
training dataset, respectively. In each optimization step, the network loss L is deter-
mined as the empirical average of the loss function `(x, t; θ) with respect to a batch
Bβ , which gives

L
(
{(x(b), t(b))}b=1,...,B; θ

)
=

1

B

B∑
b=1

`(x(b), t(b); θ). (40)

Within one training epoch, the full training dataset subdivided into batches Bβ is pre-
sented once to the network.

To assess the performance Pθ of a network, we need a transformation gθ(x) 7→ {0, 1}
for x ∈ Rdin because the network output gθ(x) ∈ R is continuous while the class labels
are discrete. We use a step function to assign a predicted class label t̂ ∈ {0, 1} according
to

t̂ =

{
0 gθ(x) < 0.5,

1 else.
(41)

The performance Pθ of a particular network with parameters θ is then evaluated using
a test dataset of size Deval containing data samples previously unknown to the network.
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3.2. Results for trained networks

The performance is determined as

Pθ =
1

Deval

Deval∑
d=1

δt(d) t̂(d) , (42)

with t(d) and t̂(d) being the target label and the predicted class label of a data sample,
respectively.

We train all networks on a training dataset of Dtrain = 104 data samples using
the common optimization algorithm ADAM with default parameters from the Python
package pytorch (version 1.4.0) [24]. Furthermore, we choose a batch size of B = 10
and train for nepochs = 2 epochs. Performance evaluation is based on a test dataset of
size Deval = 104. Throughout this thesis, we use the same training parameters unless
speci�ed otherwise.

To describe the distribution of the network output gθ(x) = zL, we can use our
knowledge regarding the input distribution. The probability πm of a data sample x(d)

belonging to component m remains unchanged when processing this data sample by the
network. Therefore, it is

pzL(zL) =
M∑
m=1

πm pm, zL(zL), (43)

where pm, zL(zL) refers to the output distribution of component m. Thus, the output
distribution is given by a general, non-Gaussian mixture model.

Since the input distribution of each component is Gaussian, we can use the Gaussian
description of the network mapping in Section 2.3 to obtain

pzL(zL) =

M∑
m=1

πm pm, zL(zL) (44)

≈
M∑
m=1

πmNm(zL|µmzL , Σm
zL) (45)

=: pGMM, zL(zL), (46)

where we trace the transformation of mean and covariance separately for each compo-
nent. Empirical estimates of the output distribution are again obtained as histograms
of the network output for data samples of the test dataset.

We �rst consider a network of depth L = 1 and width N = 10 for which we
obtain a classi�cation accuracy of Pθ = 91.3%. We exemplarily show the theoretical
and empirical curves of the components m = 1 and m = 3 belonging to t = 0 and
t = 1, respectively, in Fig. 6(a). The corresponding histograms are noticeably skewed,
suggesting that higher order cumulants become non-negligible. In Section 2.4, this
e�ect occurs to such an extent only for deeper networks while here it already appears for
shallow networks. This is probably caused by network training introducing dependencies
among network parameters θ so that the assumptions of the disorder average are only
partially ful�lled. The other two components behave similarly (see Appendix A.5).

Furthermore, we look at the classwise output distributions pt, zL(zL) which are ob-
tained by superposition of the respective components. These are depicted in Fig. 6(b)
along with the overall output distribution. The gray dashed line indicates the threshold
of the step function used for label assignment. Correspondingly, the overlap of the class-
wise distributions represents the classi�cation error Eθ. The agreement between theory
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3.2. Results for trained networks
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Figure 6: Distribution of the network output zL ∈ R for a network of depth L = 1 and
width N = 10 that is trained to solve the XOR problem. Normalized histograms of
the network output for a test dataset of size Deval = 104 act as empirical estimates of
the probability density function. Their theoretical counterparts are given by Gaussian
distributions (solid lines) with mean and covariance calculated according to Section 2.3.
In (a), we show the individual distributions for the components m = 1 and m = 3
belonging to t = 0 and t = 1, respectively. In (b), the classwise distributions pt=0, 1 and
the overall distribution pGMM are depicted.

and simulation is still reasonable, yielding a value of D̂KL(pzL, emp.‖pGMM, zL, theo.) =
1.3% with respect to the overall distribution.

For a network of depth L = 4 and width N = 10, the resulting classwise and over-
all distributions become signi�cantly more irregular, as illustrated in Fig. 7(a). This
can only be partially re�ected by the theoretical curves, thus yielding an increased
relative Kullback-Leibler divergence of D̂KL(pzL, emp.‖pGMM, zL, theo.) = 4.7%. The in-
creased network depth yields a minor performance improvement with Pθ = 91.6%.
Increasing the network width to N = 100 does not result in a distinct qualitative
improvement of the agreement between theoretical and empirical curves, as shown
in Fig. 7(b). On a quantitative level, we get a slight decrease in deviations with
D̂KL(pzL, emp.‖pGMM, zL, theo.) = 3.6%. Furthermore, we achieve a performance of Pθ =
91.1%. In both examples, the deviations between theory and simulation are larger com-
pared to networks with randomly sampled parameters in Section 2.4. In the latter case,
the approximation error is caused by the description of the data distribution at interme-
diate layers as Gaussian. Here, the further increase in deviations is presumably caused
by dependencies among network parameters which are introduced during training.

As for untrained networks, we check whether these e�ects appear consistently over
di�erent training runs. To this end, we calculate both achieved performance and relative
Kullback-Leibler divergence averaged over networks that are initialized on nseeds = 102

di�erent seeds and subsequently trained as described above. For consistency, the same
training and test datasets are used. In Fig. 8(a), we see that networks of di�erent depth
L and width N perform similarly well relative to the theoretical performance limit Pmax.
The corresponding standard errors show that this result is consistent across di�erent
network initializations.
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Figure 7: Distribution of the network output zL ∈ R for networks of depth L = 4
and width N = 10 (a) or N = 100 (b) that are trained to solve the XOR problem.
Normalized histograms of the network output for a test dataset of size Deval = 104 act
as empirical estimates of the probability density function. Their theoretical counterparts
are given by Gaussian distributions (solid lines) with mean and covariance calculated
according to Section 2.3. We show both the classwise distributions pt=0, 1 as well as the
overall distribution pGMM.

In line with expectations, the deviations between theory and simulation increase
with the network depth L as illustrated in Fig. 8(b). However, this trend is less pro-
nounced and less strictly adhered to compared to the untrained case (see Fig. 4 in
Section 2.4). Furthermore, the deviations between theory and simulation increase with
the network width N (see Fig. 8(c)) contrary to the implications of the disorder average
in Appendix A.1. For broader networks, the obtained values of the relative Kullback-
Leibler divergence for trained networks also approach a plateau for a value that is
noticeably larger than for untrained networks. When considering Fig. 7, we see that the
empirical probability density functions become more skewed with increasing network
width N . Since such a behavior cannot be captured by an approximation of the out-
put distribution as Gaussian, this explains the increase in the relative Kullback-Leibler
divergence for broader networks. The dependencies among network parameters, which
result from network training, presumably amplify higher order cumulants beyond mean
and covariance.

In addition, the cut-o� of the distribution in Fig. 7(b) might be linked to the activa-
tion function φ(z) having a global minimum and thus its image values being constrained
by this lower bound. As the last operation of the network mapping amounts to an a�ne
linear transformation, this property of the activation function φ(z) does not constitute
a hard constraint. However, using this property in the solution strategy chosen by the
network might be bene�cial in terms of maximizing the classi�cation performance.
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Figure 8: Achieved classi�cation performance and relative Kullback-Leibler divergence
for di�erent network architectures, averaged over networks that are initialized on
nseeds = 102 di�erent seeds and subsequently trained to solve the XOR problem. In
(a), mean and corresponding standard error of the achieved performance are shown for
varying network width N with the theoretical performance limit of Pmax = 92.9% given
as reference (gray dashed line). In (b), the mean value of the relative Kullback-Leibler
divergence is depicted for di�erent network architectures. In (c), mean and correspond-
ing standard error of the relative Kullback-Leibler divergence are shown for varying
network width N .
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4 Network training on Gaussian statis-

tics

In the previous chapter, we saw that deviations between theory and simulation increase
for trained networks, presumably due to dependencies among network parameters gen-
erated during training. This leads back to the theoretical question of how accurate
the description of the network as a non-linear mapping of mean and covariance is. In
particular, we are interested in which features of a solution strategy can be captured by
this perspective.

To address these questions, we study the network loss used for training which is
typically given as a sample mean of the loss function with respect to a set of data
samples. In the limit of in�nitely many data samples, this sample mean converges to
the expected value and we can relate the network loss directly to the cumulants of the
network output (see Section 4.1). Furthermore, we determine an error estimate for
the resulting expressions in the case of large but �nite datasets, which one typically
encounters in practice (see Section 4.2).

4.1 Statistical formulation of network loss

For network training, we use the mean squared error between the network output
gθ(x) = zL and the corresponding target t as loss function `(x, t; θ) = ‖gθ(x) − t‖2.
We �rst consider the case of a dataset {(x(d), t(d))}d=1,...,D with a single target label
t(d) = t for d = 1, . . . , D, where the superscript d refers to a particular data sample.
For simplicity, we take the full dataset as a single batch B ={(x(d), t(d))}d=1,...,D and
write all expressions in terms of the sample index d. In the limit of in�nitely many data
samples, we have

L
(
{(x(d), t)}d=1,...,D; θ

)
=

1

D

D∑
d=1

`(x(d), t; θ)
D→∞−−−−→

〈
`(x, t; θ)

〉
x∼ p(x|t) (47)

=
〈
‖gθ (x)− t‖2

〉
x∼ p(x|t) (48)

=
〈
‖zL − t‖2

〉
zL
. (49)

Calculating the average yields a formulation of the network loss in terms of mean and
covariance of the network output〈

‖zL − t‖2
〉
zL

=
〈∑

i

(
zLi
)2 − 2 zLi ti + t2i

〉
zL

(50)

=
∑
i

µ2
zL, i + ΣzL, ii − 2µzL, i ti + t2i (51)
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4.2. Variance of network loss for �nite datasets

= tr ΣzL + ‖µzL − t‖2. (52)

The above expression matches the intuitive expectation for classi�cation tasks: The
output mean is mapped to the given target value while the spread of data samples in
the output, its variance, is minimized.

Extending this result to K classes, we need to take into account the probability pk
for a sample to belong to class k. Assuming the attribution of class memberships to be
independent from one another, we get

1

D

D∑
d=1

‖gθ(x(d))− t(d)‖2 =

K∑
k=1

Dk

D

1

Dk

Dk∑
dk=1

‖gθ(x(dk))− tk‖2 (53)

D→∞−−−−→
K∑
k=1

pk

〈
‖zL − tk‖2

〉
zL∼ p(zL|tk)

(54)

=

K∑
k=1

pk
(
tr Σk

zL + ‖µkzL − t
k‖2
)

(55)

=: Lstat.
(
{µkzL , Σk

zL}k=1,...,K

)
, (56)

with µk
zL

and Σk
zL

being the classwise mean and covariance of the network output.

These two quantities are generally given as functions µzL = fµ
(
{G(n), k

x }n; θ
)
and

ΣzL = fΣ

(
{G(n), k

x }n; θ
)
of the classwise cumulants of the network input and the network

parameters.
With the expressions for the Gaussian description of the network mapping in Sec-

tion 2.3, we can determine theoretical values for µk
zL, theo.

and Σk
zL, theo.

as functions of
the classwise means and covariances of the network input and the network parameters
µk
zL, theo.

= f̂µ
(
µkx, Σk

x; θ
)
and Σk

zL, theo.
= f̂Σ(µkx, Σk

x; θ). Thus, we obtain

Lstat. ≈ L̂stat.
(
{µkx, Σk

x}k=1,...,K ; θ
)
. (57)

Using this expression as network loss, we can train networks directly and exclusively
on the classwise means and covariances of the network input, thereby allowing us to
check the assumption that these quantities largely contain the information necessary
to solve a given classi�cation task. Since in this case we take the Gaussian description
of the network mapping as surrogate during training, we can thereby test whether this
description is su�ciently accurate to capture the principal features of a viable solution
strategy.

Note that the �rst step of the derivation presented in this section is applicable to
any network loss of the form

L
(
{(x(d), t(d))}1≤d≤D; θ

)
=

1

D

D∑
d=1

`(x(d), t(d); θ). (58)

For di�erent choices of the loss function `(x, t; θ), this yields di�erent dependencies of
the network loss Lstat. on the cumulants of the network output.

4.2 Variance of network loss for �nite datasets

As a measure for the accuracy of the above result in the case of large but �nite datasets,
we calculate the variance of the network loss as a function of the dataset size D. As
before, we start with the case of a single target t(d) = t for d = 1, . . . , D and obtain
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4.2. Variance of network loss for �nite datasets

Var (L) = Var

(
1

D

D∑
d=1

(
gθ(x

(d))
)2 − 2 gθ(x

(d)) t+ t2
)

(59)

=
1

D2

D∑
d=1

Var
((
gθ(x

(d))
)2 − 2 gθ(x

(d)) t
)

(60)

=
1

D
Var
((
gθ(x)

)2 − 2 gθ(x) t
)

(61)

=
1

D
Var
((
zL
)2 − 2 zL t

)
, (62)

assuming all samples x(d) to be drawn independently. We further rewrite the appearing
variance in terms of the cumulants of the network output zL as

Var
((
zL
)2 − 2 zL t

)
= Var

((
zL
)2)

+ Var
(
− 2 zL t

)
+ 2 Cov

((
zL
)2
,−2 zL t

)
(63)

= G
(4)

zL
+ 2
(
ΣzL

)2
+ 4G

(3)

zL
[µzL − t] + 4 ΣzL [µzL − t]

2 . (64)

The detailed calculation can be found in Appendix A.4. For K classes, we get, analo-
gously to before,

Var (L) =
1

D2

D∑
d=1

Var
((
gθ(x

(d))
)2 − 2 gθ(x

(d)) tk +
(
tk
)2)

(65)

=
1

D2

K∑
k=1

Dk Varx|tk
((
gθ(x)

)2 − 2 gθ(x) tk
)

(66)

=
1

D

K∑
k=1

p̂k VarzL|tk
((
zL
)2 − 2 zL tk

)
(67)

=
1

D

K∑
k=1

p̂k

(
G

(4), k

zL
+ 2
(
Σk
zL

)2
+ 4G

(3), k

zL

[
µkzL − t

k
]

+ 4 Σk
zL

[
µkzL − t

k
]2 )

.

(68)

Here, p̂k = Dk
D denotes the relative sample occurrence which acts as an empirical esti-

mator for the probability pk.
We see that the variance Var(L) of the network loss scales down with the size of the

dataset D as expected, thus showing that the expression for the network loss Lstat. in
(55) continues to be a suitable approximation for large but �nite datasets. In the case
of trained networks, this value might decrease even further since all terms proportional
to µk

zL
-tk and Σk

zL
become small.
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5 Information coding paradigms for

XOR

In the previous chapter, we derived a formulation of the network loss in terms of the
classwise means and covariances of the network output. By using our description of the
network as a non-linear mapping of mean and covariance as described in Section 2.3,
we can determine these quantities as functions of both the network parameters and the
classwise means and covariances of the input data. Combining these two steps allows
us to train networks directly on the classwise means and covariances of the input data.

For our adaptation of the XOR problem in Section 3.1, the information regarding
class membership is encoded in the classwise covariances while the means are identical
for both classes. When training on the classwise means and covariances, networks thus
employ a form of covariance coding to �nd a viable solution strategy (see Section 5.1).

Since we use a Gaussian mixture model to generate data samples for this task and
thereby know the exact distribution of the input data, we can alternatively train on the
componentwise means and covariances. In this setting, the componentwise covariances
are identical while the means of all components di�er among one another. Thus, the
networks employ a form of mean coding to �nd a viable solution strategy (see Sec-
tion 5.2).

After discussing these two methods, we compare the solution strategies chosen by
the networks when trained using either one of the two above methods or when trained
on data samples (see Section 5.3). Finally, we brie�y summarize the insights gained with
regard to the network mapping for our adaptation of the XOR problem (see Section 5.4).

5.1 Covariance coding based on classwise description

We use the network loss L̂stat. derived in Section 4.1 (see Eq. (57)) to directly train
networks on the classwise means and covariances of the input data. The latter quantities
are given by

µtx =
∑
m′

π̃m′ µ
m′
x , (69)

Σt
x =

(∑
m′

π̃m′
[
Σm′
x + µm

′
x

(
µm
′

x

)T]
−
∑

m′1,m
′
2

π̃m′1 π̃m′2 µ
m′1
x

(
µ
m′2
x

)T)
, (70)

where the sum over m′ comprises only the components of the respective class label t.
Here, we use the mixture weights π̃m′ of the classwise distributions, which are given by
π̃m′ =

πm′
πt

with πt = 1/2 for t = 0, 1. Using the de�nition of the input distribution in
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5.1. Covariance coding based on classwise description

(35)-(37), we get

t = 0 : µt=0
x =

 0

0

 Σt=0
x =

 0.21 −0.16

−0.16 0.21

 , (71)

t = 1 : µt=1
x =

 0

0

 Σt=1
x =

 0.21 0.16

0.16 0.21

 . (72)

We see that class membership can be uniquely assigned based on these quantities and
is e�ectively encoded in the o�-diagonal terms of the covariances. Hence, we refer to
this setting as covariance coding.

We aim for an equal comparison between the training method based on classwise
means and covariances described in Section 4.1 and the training method based on data
samples used in Section 3.2. Therefore, we initialize the networks that are studied in
this section on the same seeds as in Section 3.2. Furthermore, we use the same training
speci�cs apart from a single adaptation: When training on data samples, the total
number of optimization or training steps is indirectly determined by the size Dtrain

of the training dataset, the batch size B and the number of training epochs nepochs
according to

ntraining steps =
Dtrain

B
nepochs. (73)

When training on classwise means and covariances, we directly choose the parameter
ntraining steps. Accordingly, we set the number of training steps to the value used in
Section 3.2, ntraining steps = 2000. For evaluation of the classi�cation performance Pθ,
we use the same dataset of size Deval = 104 as before. Consequently, the di�erence
between networks studied in this section and networks in Section 3.2 results directly
from the di�erence in training dynamics due to the adaptation of the network loss. If
not speci�ed otherwise, we keep these training speci�cs �xed when training on data
statistics in subsequent sections.

For a network of depth L = 1 and width N = 10, we achieve a high performance of
Pθ = 92.6% compared to Pmax = 92.9%. This result shows that it is indeed possible to
obtain a meaningful network mapping when training exclusively on classwise means and
covariances. We emphasize that the network did not process any data samples prior to
performance evaluation. Instead, the resulting network mapping is entirely based on our
Gaussian description of the network as a non-linear mapping of mean and covariance.
Thus, this description is su�ciently accurate to serve as an adequate representation of
the network mapping during training.

We describe the distribution px(x) of the network input as a superposition of Gaus-
sian distributions Nt=0, 1(x) per class during training. Accordingly, we can determine
theoretical results for the probability density function of the network output zL by trac-
ing the transformation of the classwise means and covariances. This approach yields

pzL(zL) =
∑
t=0, 1

πt pt, zL(zL) (74)

≈ 1

2

∑
t=0, 1

N (zL|µtzL, theo., Σt
zL, theo.), (75)

where we calculate theoretical values for the classwise means and covariances of the
network output according to µt

zL, theo.
= f̂µ

(
µtx, Σt

x; θ
)
and Σt

zL, theo.
= f̂Σ

(
µtx, Σt

x; θ
)
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5.1. Covariance coding based on classwise description
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Figure 9: Distribution of the network output zL ∈ R for a network of depth L = 1 and
width N = 10. The network was trained to solve the XOR problem using the network
loss determined from the classwise means and covariances, as derived in Section 4.1.
Normalized histograms of the network output for a test dataset of size Deval = 104

act as empirical estimates of the probability density function. In (a), the theoretical
results for the classwise distributions pt=0, 1 are given by Gaussian distributions Nt=0, 1

that are calculated using the classwise means and covariances according to Section 2.3.
In (b), the theoretical probability density functions Nm, zL for each component m are
calculated separately and the classwise distributions pt=0, 1 are given by their respective
superpositions. We further show the resulting distribution pGMM in both cases.

(see Section 2.3). Furthermore, we again approximate the classwise distributions pt, zL

as Gaussian distributions N (zL|µt
zL, theo.

, Σt
zL, theo.

) and use πt = 1/2 for t = 0, 1.
Empirical estimates of the output distribution are again obtained as a histogram of the
network output for a test dataset of size Deval = 104.

The corresponding probability density functions resulting from theory and simula-
tion are illustrated in Fig. 9(a). The theoretical curves show a poorer agreement with
the empirical curves compared to the results in Section 3.2. The increase in devia-
tions is re�ected in an increase of the relative Kullback-Leibler divergence, which is
D̂KL(pzL, emp.‖pGMM, zL, theo.) = 3.4%.

However, in Section 3.2 we used the exact form of the input distribution given as
a Gaussian mixture model with M = 4 components to determine theoretical results.
This method does not entail any approximation with regard to the input distribution
in contrast to the above method and is therefore expected to yield a more accurate
description of the distribution of the network output. To allow for an equal comparison
of the results presented here and the results in Section 3.2, we also use the component-
wise de�nition of the input distribution here to obtain the theoretical curves depicted in
Fig. 9(b). Note that the network is not trained again and its parameters θ are the same
as for Fig. 9(a). In line with expectations, theory and simulation agree signi�cantly
better compared to the classwise approach in Fig. 9(a). Correspondingly, the relative
Kullback-Leibler divergence yields D̂KL(pzL, emp.‖pGMM, zL, theo.) = 1.3%.

For a network of depth L = 4 and width N = 10, we achieve a performance of
Pθ = 92.1%. However, we are going to see that this is not necessarily representa-
tive of this network architecture, where we observe a larger variability in the obtained
performance values with regard to the initial values of the network parameters. The cor-
responding average performance Pθ = 84.8% is signi�cantly lower while the observed
variability is re�ected in a relatively large standard deviation of σPθ = 6.7%. The
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5.1. Covariance coding based on classwise description
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Figure 10: Distribution of the network output zL ∈ R for a network of depth L = 4 and
width N = 10. The network was trained to solve the XOR problem using the network
loss determined from the classwise means and covariances, as derived in Section 4.1.
Normalized histograms of the network output for a test dataset of size Deval = 104

act as empirical estimates of the probability density function. In (a), the theoretical
results for the classwise distributions pt=0, 1 are given by Gaussian distributions Nt=0, 1

that are calculated using the classwise means and covariances according to Section 2.3.
In (b), the theoretical probability density functions Nm, zL for each component m are
calculated separately and the classwise distributions pt=0, 1 are given by their respective
superpositions. We further show the overall distribution pGMM in both cases.

theoretical and empirical curves that result when using the classwise and the compo-
nentwise description of the input distribution are depicted in Fig. 10(a) and Fig. 10(b),
respectively. As in the above case for L = 1, the curves agree signi�cantly better
when using the componentwise de�nition of the input distribution to derive the the-
oretical curves. Correspondingly, we get D̂KL(pzL, emp.‖pGMM, zL, theo.) = 27.6% and

D̂KL(pzL, emp.‖pGMM, zL, theo.) = 10.7%, respectively. These values are signi�cantly in-
creased compared to both untrained networks and networks trained on data samples.
In Fig. 10, we see that the respective empirical probability density function of the net-
work output is noticeably skewed for each class. This behavior cannot be captured by
approximating the output distribution of each component as Gaussian since it results
from non-negligible higher order cumulants beyond mean and covariance. As discussed
before, the dependencies among network parameters introduced during network training
presumably amplify higher order cumulants.

To check whether the e�ects discussed here appear consistently for di�erent training
runs, we determine both achieved performance and relative Kullback-Leibler divergence
averaged over networks that are initialized on nseeds = 102 di�erent seeds and subse-
quently trained on the classwise means and covariances. We compare these results for
di�erent network architectures with respect to training on data samples and training
on classwise means and covariances. To allow for an equal comparison, we determine
in both cases theoretical curves for the probability density function by using the de�-
nition of the input distribution as a Gaussian mixture model with M = 4 components.
These results are then used to calculate the relative Kullback-Leibler divergence. The
results for both the achieved performance and the relative Kullback-Leibler divergence
are shown in Fig. 11, together with the corresponding standard error of the mean.

For networks of depth L = 1, training on classwise means and covariances yields per-
formance values very close to its theoretical upper limit of Pmax = 92.9% while training
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5.1. Covariance coding based on classwise description
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Figure 11: Achieved classi�cation performance and relative Kullback-Leibler diver-
gence for di�erent network architectures, averaged over networks that are initialized
on nseeds = 102 di�erent seeds. The networks were trained to solve the XOR problem
based on either data samples or the classwise means and covariances. In (a), mean
and corresponding standard error of the achieved performance are shown for varying
network width N , with the theoretical performance limit of Pmax = 92.9% given as ref-
erence (gray dashed line). In (b), mean and corresponding standard error of the relative
Kullback-Leibler divergence are shown for varying network width N .

on data samples yields slightly lower results. Considering deeper network architectures
of depth L = 4, we see that training on data samples yields results similar to those
for shallow networks, while for training on classwise means and covariances the average
performance drops signi�cantly. This e�ect is particularly pronounced for narrow net-
works and diminishes with increasing network width N . In Section 2.4 and Section 3.2,
we saw that our description of the network mapping becomes less accurate for deeper
networks. Since we apply this description during network training whereas we evaluate
performance based on the actual network mapping, this decrease in accuracy for deeper
network architectures explains the drop in performance for training on classwise means
and covariances. Transitioning to broader networks mitigates this e�ect, which is again
in line with expectations according to the theory in Section 2.4.

The behavior of the achieved performance values is re�ected in the obtained values
for the relative Kullback-Leibler divergence. For networks of depth L = 1, training on
data samples and training on classwise means and covariances yields similar results.
In contrast, for network depth L = 4 the relative Kullback-Leibler divergence is sig-
ni�cantly increased for networks trained on classwise means and covariances compared
to networks trained on data samples, quantifying the less accurate description of the
network output.

Nevertheless, the results presented here show that training on classwise means and
covariances yields competitive performance values in comparison to training on data
samples. Thus, our adaptation of the XOR problem is an example where the assump-
tion holds true that the essential information is contained in the classwise means and
covariances. Furthermore, it follows that the covariance coding used in training on
classwise means and covariances can serve as a viable information coding paradigm.

To obtain a high classi�cation performance according to the de�nition given in Sec-
tion 3.2, the classwise means of the network output need to be su�ciently separated.
Since the information regarding class membership is exclusively encoded in the classwise
covariances of the input data, an information exchange between mean and covariance is
thus essential for this coding paradigm. This information exchange occurs when apply-
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5.2. Mean coding based on componentwise description

ing the quadratic activation function which yields a contribution of the preactivations'
covariance Σz to the mean µy of the postactivations (see Eq. (23)(c) in Section 2.2).
However, this contribution involves only diagonal elements of the covariance while the
necessary information is encoded in the o�-diagonal terms. Therefore, performing an
a�ne linear transformation prior to the application of the quadratic activation function
is essential for this coding paradigm as well.

Lastly, we want to point out that we used our knowledge regarding the exact distri-
bution of the network input to obtain values for the classwise means and covariances.
Alternatively, we can determine empirical estimates for these quantities based on the
dataset used when training on data samples. Using these empirical estimates for train-
ing on classwise means and covariances yields results that are very similar to those
obtained using the exact values. Thus, information encoding using the classwise means
and covariances is robust to noise that is introduced by using empirical estimates of
these quantities. By using empirical estimates for the classwise means and covariances,
this training method is thus applicable to any dataset where the underlying distribution
of the input data might be unknown.

5.2 Mean coding based on componentwise description

In the previous section, we found that training on the classwise means and covariances
on average yields suboptimal performance values for deeper network architectures. This
e�ect most likely results from our description of the network output becoming less ac-
curate. At the same time, we saw that using the componentwise instead of the classwise
description of the input distribution yields a better agreement between theoretical and
empirical results for the probability density function of the network output. Since we
know the exact form of the input distribution, we can directly train on the componen-
twise means and covariances as given in (35) and (36). The class membership is then
e�ectively encoded in the componentwise means while the covariances are identical for
all components. We thus refer to this setting as mean coding.

We use the same training speci�cs as in the previous section. For a network of depth
L = 1 and width N = 10, we achieve a performance of Pθ = 92.5%. Since we train
on the componentwise means and covariances, we use these quantities to determine the
theoretical probability density function of the network output. The resulting curves
agree well with the empirical results as shown in Fig. 12(a). For the relative Kullback-
Leibler divergence, we get D̂KL(pzL, emp.‖pGMM, zL, theo.) = 1.3% which is similar to the
results obtained for networks that were trained using one of the other two methods.

For a deeper network architecture of depth L = 4 and width N = 10, we obtain
a performance value of Pθ = 92.0%. The corresponding empirical distribution of the
network output is signi�cantly skewed, as shown in Fig. 12(b). While the theoretical
results give reasonable values for mean and covariance, describing the output distri-
bution as a superposition of two Gaussian distributions per class cannot account for
the skewness of the output distribution. In consequence, the relative Kullback-Leibler
divergence is D̂KL(pzL, emp.‖pGMM, zL, theo.) = 24, 079%.

To check whether the above discussed e�ects appear consistently for di�erent train-
ing runs, we determine both achieved performance and relative Kullback-Leibler diver-
gence averaged over networks that are initialized on nseeds = 102 di�erent seeds and
subsequently trained on the componentwise means and covariances. We compare these
results for di�erent network architectures with respect to training on data samples and
training on componentwise means and covariances. The results are shown in Fig. 13,
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Figure 12: Distribution of the network output zL ∈ R for a network of depth L = 1
(a) or L = 4 (b) and width N = 10. The networks were trained to solve the XOR
problem using the network loss determined from the componentwise means and covari-
ances, as derived in Section 4.1. Normalized histograms of the network output for a test
dataset of size Deval = 104 act as empirical estimates of the probability density func-
tion. The theoretical probability density functions Nm, zL for each component m are
calculated separately and the classwise distributions pt=0, 1 are given by their respective
superpositions. We further show the overall distribution pGMM in both cases.

together with the corresponding standard error of the mean.
Similar to the results in the previous section, we obtain performance values close

to the upper limit Pmax = 92.9% in the case of networks of depth L = 1 that are
trained using the componentwise means and covariances. In contrast to before, perfor-
mance does not drop with increasing network depth when training on componentwise
means and covariances. Instead, this method yields similar results as training on data
samples. We obtain higher performance values when training on componentwise means
and covariances compared to training on classwise means and covariances since the
componentwise means and covariances give an exact description of the distribution of
the input data and in consequence generally yield a more accurate description of the
network output.

At the same time, the relative Kullback-Leibler is signi�cantly increased for deeper
network architectures compared to both training on data samples and training on class-
wise means and covariances. This is due to the empirical output distributions of each
class being signi�cantly skewed, which cannot be captured by approximation as a super-
position of two Gaussian distributions. This behavior results from higher order cumu-
lants beyond mean and covariance becoming non-negligible. As discussed in previous
sections, higher order cumulants might be ampli�ed by dependencies among network
parameters introduced during network training.

Altogether, the results presented here show that the information encoded in the
componentwise means is su�cient to train networks. Consequently, training on com-
ponentwise means and covariances achieves competitive performance in comparison to
both training on data samples and training on classwise means and covariances. Thus,
using mean coding in training on componentwise means and covariances can serve as an
alternative information coding paradigm besides covariance coding. In contrast to the
covariance coding discussed in the previous section, using the information encoded in
the componentwise means does not necessarily rely on information exchange between
mean and covariance within the network. Nevertheless, this information exchange might
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5.3. Comparison of coding paradigms with network training on data samples
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Figure 13: Achieved classi�cation performance and relative Kullback-Leibler diver-
gence for di�erent network architectures, averaged over networks that are initialized
on nseeds = 102 di�erent seeds. The networks were trained to solve the XOR prob-
lem based on either data samples or the componentwise means and covariances. In
(a), mean and corresponding standard error of the achieved performance are shown for
varying network width N , with the theoretical performance limit of Pmax = 92.9% given
as reference (gray dashed line). In (b), mean and corresponding standard error of the
relative Kullback-Leibler divergence are shown for varying network width N .

be bene�cial with regard to the separability of data in the output space and thus �nding
a viable solution strategy.

Unlike when training on classwise means and covariances, we cannot directly obtain
empirical estimates of the componentwise means and covariances to use such estimates
during training. However, for a dataset where the underlying distribution of the input
data is unknown, an analogous adaptation is to �t a Gaussian mixture model to the
classwise distributions in order to improve the description of the input data and thus
also of the output data.

5.3 Comparison of coding paradigms with network training

on data samples

We have seen that for training on Gaussian data statistics there exist two possible
information coding paradigms which can be used for viable solution strategies. As a
next step, we study to what extent these solution strategies di�er from one another as
well as how they compare to the solution strategy chosen by the network when training
on data samples. To keep the arguments concise, in the following we refer to training
on data samples as sample coding.

For a network of depth L = 1 and width N = 10, we train a particular network
that is initialized on a single seed using all of the above-mentioned training methods
and illustrate the resulting network mappings in Fig. 14. The implemented decision
boundaries correspond well to the optimal decision boundaries, which is in line with
expectations since all trained networks yield performance values close to the theoretical
upper limit.

The main di�erence appears in the area around zero which corresponds to a small
proportion of the probability mass of each class. Therefore, in relation to the size of
the full test dataset, this di�erence only applies to a small number of data samples.
Consequently, the classi�cation performance is not strongly a�ected by the behavior

35



5.3. Comparison of coding paradigms with network training on data samples
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Figure 14: Illustration of resulting network mapping for di�erent coding paradigms. All
points within an area of one color (blue, red) are assigned to the respective class label
(t = 0, 1), while the gray areas indicate the respective decision boundaries. We give the
optimal decision boundaries as reference (black lines).

of the network mapping concerning that area. In the case of sample coding, the low
probability mass around zero also implies that it can be more di�cult to infer the po-
sition of the optimal decision boundaries within that area, as can be seen in Fig. 14(a).
However, overall the resulting network mappings behave similarly for the di�erent cod-
ing paradigms. Therefore, the network mappings are uninformative with respect to
di�erences between the solution strategies chosen by the networks.

Since the number of parameters within a network is rather large, two di�erent choices
of network parameters can yield a similar network mapping gθ1(x) ≈ gθ2(x) for x ∈ Rdin .
However, the internal information processing might still be based on di�erent solution
strategies. Therefore, we study whether a solution strategy chosen by a network that
was trained using one method is a viable solution strategy when subsequently training
with a di�erent method. In particular, we consider all six combinations of pairs of
coding paradigms (sample coding, covariance coding, and mean coding). In all settings,
we choose the same training speci�cs as in the previous sections, in particular we have
a total of ntraining steps = 2000 optimization steps for each training run. Accordingly,
the used coding paradigm switches at training step Tswitch = 2.000, where we in general
denote the training step as T .

We study the network loss over training time and the absolute change of network
parameters within the past ∆T = 10 training steps which is determined according to
∆‖θ‖2

∣∣
T

= ‖θT+∆T
-θT ‖2. When comparing mean and covariance coding as shown in

Fig. 15(a) and Fig. 15(b), we see that the value of the network loss changes signi�-
cantly at Tswitch and the network parameters are adapted accordingly. In particular,
the resulting change of the network parameters ∆‖θ‖2 at Tswitch is of the same order
of magnitude as at the beginning of network training which indicates that the network
is trained anew. Thus, mean coding and covariance coding �nd two di�erent solution
strategies to solve the given task.
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Figure 15: Network loss (red) and absolute change of network parameters (blue) for a
network of depth L = 1 and width N = 10. The network was trained using one coding
paradigm until Tswitch = 2.000 (dashed gray line) and subsequently trained using a
di�erent coding paradigm as indicated.

As a next step, we compare covariance coding and sample coding with one an-
other, as shown in Fig. 15(c) and Fig. 15(d). Due to the stochasticity introduced by
determining the network loss as the sample mean of a batch B of size B = 10 of the
full training dataset, both network loss and network parameters continue to �uctuate
slightly even after training has converged. When �rst training with covariance coding
and subsequently with sample coding, the network loss on average decreases slightly
at Tswitch and the network parameters are slightly adapted accordingly, as shown in
Fig. 15(c). When switching the order of these two coding paradigms, the network loss
changes signi�cantly at Tswitch and we see a corresponding peak in the change of net-
work parameters ∆‖θ‖2 at Tswitch (see Fig. 15(d)). Contrary to setting in Fig. 15(c),
the magnitude of the change of network parameters ∆‖θ‖2 at Tswitch is similar to the
magnitude at the beginning of network training, which indicates that the network is
trained anew.

Since evaluation of classi�cation performance is sample-based, we expect any net-
work that yields a high performance to implement a solution strategy that is at least
close to a solution strategy viable for sample coding. In line with expectations, Fig. 15(d)
shows that sample coding can implement a solution strategy that is similar to the one
that is used for covariance coding. However, covariance coding yields a di�erent solution
strategy than the one found by sample coding when initialized with randomly sampled
network parameters. Taken together, these results indicate that training on data sam-
ples �nds yet another solution strategy that di�ers from both mean and covariance
coding.

Lastly, we compare mean coding and sample coding which is shown in Fig. 15(e)

37



5.4. Interim conclusions

and Fig. 15(f). When �rst training with mean coding and subsequently with sample
coding, the network parameters show only slight changes, indicating that mean coding
is in fact a viable solution also for sample coding. The switch between methods intro-
duces �uctuations in both network loss and network parameters after Tswitch. These
�uctuations result from the stochasticity due to the use of batches in network training
(see Fig. 15(e)). When switching the order of these two coding paradigms, the network
loss decreases slightly at Tswitch while the network parameters are adapted noticeably,
as shown in Fig. 15(f). The order of magnitude of the change of the network parameters
∆‖θ‖2 at Tswitch is similar to the magnitude at the beginning of network training. Thus,
mean coding yields a di�erent solution strategy than the one found by sample coding
when initialized with randomly sampled network parameters.

To understand these results, we consider the de�nition of the input distribution as a
Gaussian mixture model. In the case that the Gaussian distribution of each component
is rather narrow, we can approximate

x|x∼N (x|µmx ,Σmx ) ≈ µmx (76)

and rewrite the network loss used during training on data samples as

L
(
{(x(b), t(b))}b=1,...,B; θ

)
=

1

B

B∑
b=1

‖gθ
(
x(b)
)
− t(b)‖2 (77)

≈
∑
m

πm‖gθ
(
µmx
)
− tm‖2. (78)

This corresponds to a componentwise mean-�eld approximation of the network as

gθ,MF =
∑
m

πm gθ
(
µmx
)
. (79)

Here, we do not get a contribution from the diagonal terms of the covariance in com-
parison to our description as a non-linear mapping of mean and covariance (see Eq.
(23)(c) in Section 2.2 and Section 2.3). In the case that the Gaussian distribution of
each component is su�ciently narrow, this contribution becomes negligible and thus
mean coding matches sample coding, which explains the result in Fig. 15(e).

In the case of covariance coding, we would need to replace the componentwise by
the classwise means in the above derivations. However, this approach does not yield
a sensible description of the network mapping with regard to the given task since the
classwise means neither correspond to the actual values of the data samples nor contain
any information regarding class membership.

Compared to the other two training methods, sample coding can infer information
contained in higher order cumulants and might therefore yield a slightly di�erent solu-
tion strategy than mean and covariance coding, which explains the results in Fig. 15(d)
and Fig. 15(f). Altogether, these considerations correspond well to the results presented
in Fig. 15.

5.4 Interim conclusions

Based on the results that we have discussed so far, we can conclude that our descrip-
tion of the network mapping as a non-linear mapping of mean and covariance of the
input distribution already gives a reasonable approximation of the network output. In
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5.4. Interim conclusions

particular, it is su�ciently accurate to train networks on our adaptation of the XOR
problem so that they yield competitive performance values compared to training on
data samples. Consequently, our assumption that the information relevant to solve the
given task is contained in the classwise means and covariances has proven valid for our
adaptation of the XOR problem.

However, we also saw that for deeper network architectures the network output is
signi�cantly skewed, which cannot be captured by approximating the output distri-
bution as Gaussian. This behavior probably results from the higher order cumulants
beyond mean and covariance becoming non-negligible. Dependencies among network
parameters that are introduced during network training presumably amplify higher or-
der cumulants.

Furthermore, there exist di�erent information coding paradigms which can be used
by the network to implement di�erent solution strategies. More precisely, training
on data samples can utilize both mean coding and covariance coding as well as further
solution strategies that possibly leverage information encoded in higher order cumulants.
Altogether, decomposing the network in terms of cumulants allows us to gain insights
into the information used for a particular solution strategy as well as the functional
principles this strategy is based on.
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6 Classi�cation on MNIST

So far, we have seen that the description of the network as a non-linear mapping of mean
and covariance is su�ciently accurate to train networks on the XOR problem described
in Section 3.1. As a next step, we apply this training method to classi�cation of the
MNIST database as an example of non-synthetic data. In this case, we exclusively
utilize empirical estimates of the classwise means and covariances of the input data
during training. This allows us to check to which extent a viable solution strategy can
be based on these features.

We �rst give an overview of the MNIST database and provide an intuition for the in-
formation contained in the corresponding Gaussian data statistics (see Section 6.1). We
then train networks both on data samples and on the classwise means and covariances
to compare the achieved performance values (see Section 6.2).

6.1 MNIST database

The MNIST database (Modi�ed National Institute of Standards and Technology database)
provides gray-scale images of handwritten digits from zero to nine and is a widely used
example in machine learning. It was �rst introduced in 1998 by LeCun et al. [25]
and forms a subset of a larger dataset from the National Institute of Standards and
Technology (NIST). The images have been modi�ed in such a way that the digits are
normalized with respect to their size and centered in images of 28 × 28 pixels. The
MNIST database consists of a training dataset of 60, 000 images and a test dataset of
10, 000 images [26]. We show examples of images from the training dataset in Fig. 16.

The classi�cation task consists in assigning each image to the corresponding digit.
For data processing, the gray-scale values of each image are vectorized, yielding input
data of size din = 28× 28 = 784. Apart from this, no further pre-processing is applied.

We use network architectures with dout = 10 output units and choose the class labels
as tk = êk for k = 1, . . . , 10 with êk being the kth unit vector ((êk)i = δik). Here, the
class k contains all images showing digit k− 1. This choice of class labels is called one-
hot-encoding and avoids introducing any hierarchy among class labels which can harm
performance [27]. We adapt the assignment of predicted class labels t̂ for the network

Figure 16: Example images from the MNIST database for the digits from zero to nine.
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6.2. Results for di�erent training methods

mapping gθ(x) ∈ R10 as follows

t̂ = tk̂ for k̂ =
[
argmax

i
(gθ(x))i

]
. (80)

For training on the classwise means and covariances, we calculate these quantities
from the full training dataset. From the classwise means shown in Fig. 17, we can see
that these act as representatives of their respective class.

Figure 17: Illustration of classwise means calculated from the full training dataset for
the digits from zero to nine.

To obtain an understanding of the information available to the network when train-
ing on the classwise means and covariances, we can draw samples from the corresponding
multivariate Gaussian distributions. For this purpose, we use Σ̃t

x = Σt
x, emp. + 10−5I for

the covariance to ensure that it is non-singular. For the digit three, data samples drawn
from the corresponding Gaussian distribution as well as images from the training dataset
are depicted in Fig. 18. The comparison shows that approximating the classwise dis-
tribution as Gaussian can already account for a large amount of the variability within
each class. However, we also see that it cannot cover the original distribution to its full
extent.

(a) data samples from Gaussian distribution (b) data samples from training set

Figure 18: Illustration of input data for the digit three. (a) Data samples drawn from
the corresponding Gaussian distribution. (b) Data samples from the training dataset.

6.2 Results for di�erent training methods

We compare training on data samples and training on classwise means and covariances
as described in Section 4.1. For training on data samples, we use the full training dataset
and choose a batch size of B = 100 and nepochs = 2 training epochs. These training
speci�cs correspond to ntraining steps = 1200 training steps (see Eq. (73) in Section 5.1),
which we thus use for training on classwise means and covariances.

We calculate the achieved classi�cation performance averaged over networks that are
initialized on nseeds = 10 di�erent seeds and subsequently trained using one of the above
methods. To allow for an equal comparison, we use the same network initializations for
both training methods. Compared to previous sections, we here average over a relatively
small number of networks because each training run is signi�cantly more expensive
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Figure 19: Achieved classi�cation performance on MNIST for di�erent network archi-
tectures, averaged over networks that are initialized on nseeds = 10 di�erent seeds. The
networks were trained on either data samples (yellow) or the classwise means and co-
variances (green). We show both mean and corresponding standard error for varying
network depth L and width N , respectively.

in terms of computation time. Therefore, we examine the standard deviations of the
obtained performance values and its corresponding error estimates in more detail below.

The obtained performance values for network architectures of di�erent depths and
widths are shown in Fig. 19(a) and Fig. 19(b), respectively. For both training methods,
performance increases with network depth L and network width N . This is in line
with expectations since larger networks are typically more powerful. At the same time,
we observe a performance gap of ca. 4 − 5% between the two training methods which
appears consistently for all used network architectures. This suggests that this gap does
not arise due to a limitation of the expressive power of a particular network architecture.
Instead, training on data samples can presumably leverage information contained in
higher order cumulants beyond mean and covariance for each class, allowing for a better
separation of data samples in the output space.

Due to the relatively small number of seeds, we examine in detail the corresponding
standard deviations, which act as estimates for the variability in performance across
networks, and their error estimates to assess whether the achieved performance values
and in particular the observed performance gap are consistent across di�erent network
initializations. The values for the standard deviation are all smaller than 0.5%, as shown
in Fig. 20. For two network architectures, the error estimates when training on data
samples are relatively large so that the corresponding errorbars pass to the negative
axis, which is a pure artifact from the statistical analysis. Nevertheless, the error esti-
mates are in a reasonable range and thus indicate that the obtained performance values
are consistent across di�erent network initializations. In particular, the performance
gap does not result from variability of classi�cation performance for di�erent network
initializations since its magnitude is around 4− 5%.

Furthermore, we see in Fig. 19 that the achieved performance reaches a plateau for
both training methods, yielding average performance values of up to Pθ = 97.0% for
L = 4 and N = 250 when training on data samples. In comparison, a performance
of Plit. = 96.95% was obtained in the original work by LeCun et al., 1998 [25]. In
this work, a multi-layer perceptron with three layers of widths 28 × 28 − 300 − 100
was trained using the mean squared error as loss function. More recent works report
performance values of up to Plit. = 98.6% for a similar network architecture of a multi-
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Figure 20: Standard deviations of the achieved classi�cation performance on MNIST
and corresponding error estimates for di�erent network architectures, averaged over
networks that are initialized on nseeds = 10 di�erent seeds. The networks were trained
on either data samples (yellow) or the classwise means and covariances (green).

layer perceptron. In that case, no additional pre-processing of the images was used,
but the networks were trained with other training speci�cs, in particular a di�erent
loss function [28]. Thus, our choice of network architecture and training speci�cs yields
performance results comparable to those of previous studies on this topic.
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7 Limitations of network training on

Gaussian statistics

In the previous chapter, we saw that, while training on classwise means and covariances
yields reasonable results, it can be suboptimal compared to training on data samples.
Most likely, training on data samples can leverage additional information that is con-
tained in higher order cumulants to �nd a superior solution strategy.

To test this hypothesis, we create a classi�cation task for which the necessary infor-
mation is exclusively contained in higher order cumulants beyond mean and covariance
(see Section 7.1). Consequently, we expect training on Gaussian data statistics to fail
while training on data samples should still achieve high performance which we validate
by applying both training methods (see Section 7.2).

7.1 Construction of the problem of alternating hills

We construct a dataset using a Gaussian mixture model (see Section 3.1) for which
the classwise means and covariances are identical while higher order cumulants di�er
between classes. To this end, we choose M = 4 components for din = 2 and set

t = 0 :



µm=1
x = −

(
1.5

0

)
Σm=1
x =

(
0.05 0

0 0.05

)
,

µm=2
x =

(
0.5

0

)
Σm=2
x =

(
0.05 0

0 0.05

)
,

(81)

t = 1 :



µm=3
x = −

(
0.5

0

)
Σm=3
x =

(
0.05 0

0 0.05

)
,

µm=4
x =

(
1.5

0

)
Σm=4
x =

(
0.05 0

0 0.05

)
.

(82)

The components are weighted according to

πm =

{
1
8 for m = 1, 4;
3
8 else.

(83)

The resulting distribution is shown in Fig. 21(a). The di�erent weighting of compo-
nents is illustrated in Fig. 21(b), where we show a histogram of the data samples when
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7.1. Construction of the problem of alternating hills
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Figure 21: Distribution of data samples x ∈ R2 for the problem of alternating hills.
Data samples are drawn from the Gaussian mixture model de�ned in (81)-(83) with class
labels t ∈ {0, 1} (blue, red) assigned accordingly. In (a), we show the spatial distribution
of the data samples as well as the optimal decision boundaries for solving the task (black
lines). For illustrative purpose, we show a subset of 103 data samples of the full dataset
of size D = 104 and constrain the depicted area in such a way that the majority of
data samples is shown. In (b), we show a histogram of the full dataset projected to
the x1-axis with corresponding one-dimensional classwise distributions (solid blue and
red lines). The intersection points of the classwise probability density functions (gray
dashed lines) de�ne the optimal decision boundaries.

projected to the x1-axis. The probability density function takes the form of four adja-
cent hill-like structures which are assigned to the two classes in an alternating manner.
Hence, we call this classi�cation task the problem of alternating hills.

The classwise means and covariances are given by

µtx =
∑
m′

π̃m′ µ
m′
x , (84)

Σt
x =

(∑
m′

π̃m′
[
Σm′
x + µm

′
x

(
µm
′

x

)T]
−
∑

m′1,m
′
2

π̃m′1 π̃m′2 µ
m′1
x

(
µ
m′2
x

)T)
, (85)

where the sum over m′ comprises only the components of the respective class label t.
Here we use the mixture weights π̃m′ of the classwise distributions, which are given by
π̃m′ =

πm′
πt

with πt = 1/2 for t = 0, 1. This yields

µt=0,1
x =

 0

0

 , (86)

Σt=0,1
x =

 0.8 0

0 0.05

 . (87)

Furthermore, we can determine the third order cumulant according to its de�nition and
obtain

G
(3), t
x, (r1, r2, r3) =

{
−δr1 r2 r3 δr11 0.75 for t = 0,

δr1 r2 r3 δr11 0.75 else.
(88)

Thus, while mean and covariance for each class are the same, the respective third order
cumulants di�er from one another by a sign factor. Consequently, the third order
cumulant is the cumulant of lowest order that contains information regarding class
membership. In particular, this information is also su�cient to correctly assign the
respective class.
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7.2. Results for di�erent training methods

Theoretical performance limit

As for our adaptation of the XOR problem in Section 3.1, the overlap of the probability
density functions corresponding to di�erent components implies a theoretical limit of
the achievable performance. We �rst determine the optimal decision boundaries for
the given task which correspond to the intersection points of the classwise probability
density functions. Due to the symmetry of the distribution, one of these boundaries
coincides with the x2-axis while the other two are parallel to the x2-axes and obey

1

8

1√
2π 0.05

exp

(
(x∗1,± ∓ 1.5)2

2 · 0.05

)
=

3

8

1√
2π 0.05

exp

(
(x∗1,± ∓ 0.5)2

2 · 0.05

)
,

from which follows

x∗1,± = ±(1 + 0.05 ln 3)

≈ ±1.06.

The minimal expected classi�cation error εm of each component m is given by
the respective probability mass which is not located within the corresponding decision
boundaries. Thus, we have

εm=1,4 = 1− Φ0, 1

(
x∗1,± ± 1.5
√

0.05

)
≈ 2.3%,

εm=2,3 =

[
1− Φ0, 1

(
x∗1,± ∓ 0.5
√

0.05

)]
+

[
1− Φ0, 1

(
0∓ 0.5√

0.05

)]
≈ 1.9%,

yielding a minimal expected cumulative classi�cation error of

Emin = 2
1

8
εm=1,4 + 2

3

8
εm=2,3

≈ 2.0%.

Consequently, the achievable performance for this task is bounded by Pmax = 98.0%,
which we take as baseline for network evaluation in the following sections.

7.2 Results for di�erent training methods

We train networks using three di�erent approaches: As a �rst method, we train on the
exact classwise means and covariances according to Section 4.1. We expect this method
to fail since the classwise means and covariances are identical for the two di�erent
classes. In addition, we train on data samples in which case we expect to obtain high
performance results as the distribution of the input data can be estimated from data
samples. Lastly, we train on the componentwise means and covariances as a cross-check.
In contrast to the classwise means and covariances, these give an exact description
of the distribution of the input data. In particular, the mean values of components
belonging to di�erent classes di�er from each other and we therefore expect to obtain
high performance results. To allow for an equal comparison, we train networks that are
initialized on the same seeds when using the di�erent methods.
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Figure 22: (a) Evolution of network loss during training for a network of depth L = 2
and width N = 10. The network was trained on the classwise means and covariances to
solve the problem of alternating hills. (b) Illustration of the resulting network mapping.

For a network of depth L = 2 and width N = 10, we obtain a performance of
Pθ, classwise = 46.2% when using the �rst training method. This result is in line with
our expectations, being even slightly worse than assigning class labels by chance, which
results in Pchance = 50%. At the same time, since the network loss ceases changing on a
noticeable scale, the network has been trained to its full extent when using this method
(see Fig. 22(a)).

To understand the solution strategy chosen by the network, we study the training
objective, which in general amounts to minimizing the network loss with respect to the
network parameters θ. According to the derivations in Section 4.1, the network loss can
be written in terms of the classwise means and covariances of the network output. For
training on classwise data statistics, the training objective is thus generally given by

min
θ
Lstat.

(
{µkzL , Σk

zL}k=1,2; θ
)

= min
θ

∑
k=1,2

pk
(
tr Σk

zL + ‖µkzL − t
k‖2
)
. (89)

During training on classwise means and covariances, we calculate theoretical values
for mean and covariance of the network output according to µk

zL, theo.
= f̂µ

(
µkx, Σk

x; θ
)

and Σk
zL, theo.

= f̂Σ

(
µkx, Σk

x; θ
)
(see Section 2.3). Since the classwise means and co-

variances of the input distribution are identical for both classes, the corresponding
theoretical values for mean and covariance of the network output are also identical.
Consequently, the network loss used for training on classwise means and covariances is
given by

min
θ
L̂stat.

(
{µkx, Σk

x}k=1,2; θ
)

= min
θ

1

2

∑
t=0,1

‖µzL, theo. − t‖2 + tr ΣzL, theo., (90)

where L̂stat.
(
{µkx, Σk

x}k=1,2; θ
)

= Lstat.
(
{f̂µ(µkx, Σk

x; θ), f̂Σ(µkx, Σk
x; θ)}k=1,2; θ

)
.

The �rst term in the above expression is minimized for zL = gθ(x) ≡ 0.5. However,
network training does not precisely yield this solution, but constrains the network out-
put to values close to this solution so that gθ(x) ≈ 0.5 for any x ∈ Rdin , which matches
the behavior of the network illustrated in Fig. 22(b). As described in Section 3.2, the
threshold for the assignment of the predicted labels t̂ is set to 0.5. Hence, the net-
work behaves similarly to assigning class labels by chance, which explains the obtained
performance value.

When training on data samples, we achieve a performance of Pθ, samples = 91.5% for
the network initialized to the same parameters. As a cross-check, we train on the compo-
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Figure 23: Decision boundaries implemented by a network of depth L = 2 and width
N = 10 for the problem of alternating hills. In (a), the network was trained on data
samples. In (b), the network was trained on the componentwise means and covariances.
All points within a region of one color (blue, red) are assigned to the respective class
label (t = 0, 1). We show the optimal decision boundaries (black lines) as reference.
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Figure 24: Decision boundaries implemented by a network of depth L = 4 and width
N = 10 for the problem of alternating hills. In (a), the network was trained on data
samples. In (b), the network was trained on the componentwise means and covariances.
All points within a region of one color (blue, red) are assigned to the respective class
label (t = 0, 1). We show the optimal decision boundaries (black lines) as reference.

nentwise means and covariances, which yields a similar performance of Pθ, componentwise =
90.5%. The respective decision boundaries for the trained networks are shown in Fig. 23.

Both networks exhibit a similar behavior: In each case, one of the resulting decision
boundaries aligns well to the optimal decision boundary at x1 = 0. The other two
decision boundaries are however set further outwards from the center in comparison
to the optimal decision boundaries. This explains the slight gap between the achieved
performances and the upper limit Pmax. For deeper network architectures, however,
we can achieve performance values close to this upper limit when using the latter two
methods. In these cases, the decision boundaries of the trained networks agree well
with the optimal decision boundaries (see Fig. 24). Therefore, the performance gap
for L = 2 might result from constraints of the network mapping due to the particular
network architecture.

As in previous sections, we check whether the behavior of the three di�erent train-
ing methods is consistent across di�erent training runs. To this end, for each training
method we calculate the achieved performance averaged over networks that are initial-
ized on nseeds = 102 di�erent seeds. Furthermore, we compare the obtained results for
network architectures of di�erent depth L and width N , which are collectively presented
in Fig. 25. We see that training on classwise means and covariances consistently yields
performance values that correspond to assigning class labels by chance while the other
two methods achieve performance values close to the upper limit Pmax.

The observed di�erence in achieved performance stems from the fact that the latter
two training methods can leverage information essential for solving the given task. As
discussed in the previous section, this information is contained in higher order cumulants
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Figure 25: Achieved classi�cation performance for di�erent network architectures, av-
eraged over networks that are initialized on nseeds = 102 di�erent seeds. The networks
were trained using di�erent training methods to solve the problem of alternating hills.
We show both mean and corresponding standard error. The theoretical performance
limit of Pmax = 98.0% (gray dashed line) and the performance value of Pchance = 50%
corresponding to class assignment by chance (gray dotted line) are given as references.

of the classwise distributions beyond mean and covariance. Training on data samples can
probably infer these quantities from given input data. When training on componentwise
means and covariances, the classwise distributions are given as superpositions of the
corresponding components. These thereby e�ectively include higher order cumulants
beyond mean and covariance. While these assertions seem sensible on a conceptual
level, we yet need to verify them, which we do in Section 9.1.

The case L = 1 forms an exception with respect to the achieved performance values
shown in Fig. 25(a): In addition to training on classwise means and covariances, both
training on data samples and training on componentwise means and covariances do not
�nd a network mapping that solves the given task. E�ectively, this network architecture
and in particular the quadratic activation function together with the used loss function
are not powerful enough to leverage information from higher order cumulants beyond
mean and covariance of each class to separate these classes. We discuss this e�ect in
more detail in Chapter 10.

As in Section 5.1, we can alternatively determine empirical estimates of the classwise
means and covariances and train networks using these estimates instead of the exact
values. Even though these empirical estimates di�er marginally between the two classes,
this di�erence is an artifact of the particular dataset and thus does not contain any
information regarding class membership. In line with expectations, we thus obtain very
similar results when using empirical estimates of the classwise means and covariances
for network training.
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8 Transformation of higher order statis-

tics within networks

In previous chapters, we saw examples where higher order cumulants beyond mean and
covariance contain information relevant to solving a given task and are thus important
for understanding the solution strategy chosen by the network. Furthermore, we found
that deviations between theory and simulation increase for deeper network architectures.
These deviations result from an accumulation of approximation errors due to neglecting
higher order cumulants.

Therefore, we here study the in�uence of contributions from these higher order
cumulants (see Section 8.1). To this end, we extend the Gaussian description of the
network mapping derived in Section 2.3 to consistently include contributions from higher
order cumulants (see Section 8.2). We compare the resulting theoretical values with both
empirical results and theoretical values determined using the Gaussian description of
the network mapping for untrained networks (see Section 8.3).

8.1 Cumulant transformation by a single network layer

We consider the case that the layer input x ∈ RNin follows an arbitrary non-Gaussian
distribution px(x). Thus, the distribution of the input data is described by non-zero

cumulantsG
(n)
x of arbitrary order n. Since taking into account cumulants up to arbitrary

order is infeasible, we truncate the series of cumulants at a certain order nmax. This
truncation corresponds to approximating the data distribution as

px(x|G(1)
x , G(2)

x , . . . , G(nmax)
x , . . . ) ≈ p̂x(x|G(1)

x , G(2)
x , . . . , G(nmax)

x ). (91)

Based on this, we want to determine an approximation p̂y(y|G(1)
y , G

(2)
y , . . . , G

(ñmax)
y ) for

the distribution of the layer output y including higher order cumulants beyond mean
and covariance up to order ñmax. To keep the notation concise, we drop the layer index
l in this section.

For the pre-activations z = Wx+ b, we derived relations for cumulants of arbitrary
order in Section 2.1 which are given by

G
(n)
z, (r1,...,rn) =


∑
s
wrsG

(1)
x, (s) + br for n = 1,∑

s1,...,sn

wr1 s1 . . . wrn sn G
(n)
x, (s1,...,sn) else.

The analytical derivations in Section 2.1 for the cumulants of the post-activations
y = z + α z2 rely entirely on the fact that we perform an average with regard to a
Gaussian distribution, which does not apply in this case. Nonetheless, the expressions
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for cumulants G
(n)
y of order n (see Eq. (20) in Section 2.1) still account for any contribu-

tion that is generated exclusively by mean µz and covariance Σz of the pre-activations.
To take into account additional contributions that involve higher order cumulants, we
here use Feynman diagrams as described in Section 2.2. According to the rules for

composing these diagrams, there are no additional contributions to the mean µy = G
(1)
y

of the post-activations. For the covariance Σy = G
(2)
y , we additionally get:

Σy, rs |add. = α
(
G

(3)
z, (r, s, s) +G

(3)
z, (s, r, r)

)
+ 2α2

(
G

(1)
z, (r)G

(3)
z, (r, s, s) +G

(1)
z, (s)G

(3)
z, (s, r, r)

)
+ α2G

(4)
z, (r, r, s, s)

= +

(a) (b)

+

(c)

(92)
Since cumulants are symmetric with respect to their indices, we obtain symmetrized
terms for any non-symmetric diagram, as in (92)(a) and (92)(b).

While the total number of Feynman diagrams and the corresponding contributions
are manageable for both covariance and mean, the amount of diagrams increases signif-
icantly for higher order cumulants. In consequence, keeping track of all contributions
to a cumulant of order n that are generated in a single network layer from cumulants
up to order nmax becomes infeasible already at order n = 3. Instead, we need some
guiding principle according to which we take into account contributions that involve
higher order cumulants in a consistent manner.

8.2 Linear approximation to include higher order data statis-

tics

The method of Feynman diagrams, which we use to determine contributions from higher
order cumulants, is based on an expansion of the exponential term in the cumulant-
generating function

Wy (j) = ln
〈

exp
(
jTy
)〉

y
(93)

= ln

〈
exp

(
jTz + α

∑
r

jr z
2
r

)〉
z

(94)

= ln

〈∏
r

( ∞∑
k=0

1

k!
(jr zr + αjr z

2
r )k

)〉
z

. (95)

A natural way to arrange and subsequently truncate this expansion series is to use
the strength α of the quadratic term in the non-linear activation function φ(z) as an
expansion parameter. If the expansion parameter is small, all contributions that scale
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8.2. Linear approximation to include higher order data statistics

with larger powers of this parameter become negligible. Thus, we get a sensible ap-
proximation for the cumulant-generating function as well as the cumulants of the layer
output.

Since we want to determine corrections to our Gaussian description of the network
mapping in Section 2.3, we apply this truncation exclusively to contributing terms that
involve higher order cumulants beyond mean and covariance. Including contributions

up to linear order in α and cumulants up to third order G
(3)
z , we get

Σy, rs |add. = α
(
G

(3)
z, (r, s, s) +G

(3)
z, (s, r, r)

)
=

(a)
(96)

G
(3)
y, (r, s, t) = G

(3)
z, (r, s, t) + α

(
Σzl, rs Σzl, st + Σzl, sr Σzl, rt + Σzl, rt Σzl, ts

)
+ 2αG

(3)
z, (r, s, t)

(
G

(1)
z, (r) +G

(1)
z, (s) +G

(1)
z, (t)

)

= +

(a) (b)

+

(c)
(97)

Using this truncation in each layer, we can iteratively determine theoretical values for
the cumulants of the network output zL up to order nmax = 3 as

µzl, r = (W l µyl + bl)r,

µyl+1, r = µzl, r + α (µzl, r)
2 + αΣzl, rr,

}
for l = 0, . . . , L− 1

µzL, r = (WL µyL + bL)r;

Σzl, rs =
(
W l Σyl (W l)T

)
rs
,

Σyl+1, rs = Σzl, rs + 2α
(
µzl, r Σzl, rs + µzl, s Σzl, sr

)
+ 2α2 (Σzl, rs)

2 + 4α2 µzl, r Σzl, rs µzl, s

+ α
(
G

(3)
z, (r, s, s) +G

(3)
z, (s, r, r)

)
,


for l = 0, . . . , L− 1

ΣzL, rs =
(
WL ΣyL (WL)T

)
rs

;
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G
(3)

zl, (r, s, t)
=
∑
u, v, w

(W l)r u (W l)s v (W l)t wG
(n)

yl, (u, v, w)
,

G
(3)

yl+1, (r, s, t)
= G

(3)

zl, (r, s, t)

+ α
(
Σzl, rs Σzl, st + Σzl, sr Σzl, rt + Σzl, rt Σzl, ts

)
+ 2αG

(3)

zl, (r, s, t)

(
G

(1)

zl, (r)
+G

(1)

zl, (s)
+G

(1)

zl, (t)

)
,


for l = 0, . . . , L− 1

G
(3)

zL, (r, s, t)
=
∑
u, v, w

(WL)r u (WL)s v (WL)t wG
(n)

yL, (u, v, w)
.

The contributions taken into account for our Gaussian description of the network
mapping in Section 2.3 include terms up to O(α2). Accordingly, this would be a natural
choice to truncate the expansion series when considering contributions from higher order
cumulants beyond mean and covariance. However, the number of resulting Feynman
diagrams is then neither instructive nor feasible. Thus, we here use an approximation
up to linear order O(α) in each layer.

8.3 Results for untrained networks

To assess the e�ect of including higher order cumulants beyond mean and covariance,
we compare the theoretical results obtained using the expressions in the previous section
with the theoretical results obtained when using the Gaussian description of the network
mapping described in Section 2.3. We consider the case of untrained networks and use
the same speci�cations for both the distribution of the input data and the network
initialization as in Section 2.4.

Although the network input is Gaussian distributed, we get non-zero contributions to
the third order cumulant in the �rst network layer when taking into account higher order
cumulants up to linear order in α. We calculate theoretical values for the cumulants
of the network output up to order n = 3 using the relations derived in the previous
section. Based on these, we can determine theoretical curves for the probability density
function of the network output for dout = 1 by using the Edgeworth expansion. This
expansion takes into account corrections to a Gaussian approximation resulting from
higher order cumulants [29]. Up to �rst order, it is given by

p̂zL,Edgeworth(zL) = N (zL|µzL , ΣzL)

[
1−

G
(3)

zL

6 (ΣzL)3/2
He3

(
zL − µL
(ΣzL)1/2

)]
, (98)

where He3(z) denotes the Hermite polynomial of third order. Since this polynomial can
yield negative values, we use

pzL, theo., layerwise(z
L) = min

(
0, p̂zL,Edgeworth(zL)

)
(99)

to ensure that the resulting theoretical curve for the probability density function is
non-negative.

As the in�uence of higher order cumulants becomes more noticeable for deeper
network architectures, we consider networks of depth L = 4 and width N = 10.
We see that the theoretical curve derived from the linear approximation agrees bet-
ter with the empirical distribution than the theoretical curve derived from the Gaus-
sian description of the network output, as shown in Fig. 26(a). This decrease in
deviations is also re�ected in the relative Kullback-Leibler divergence, which yields
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Figure 26: Distribution of the network output zL ∈ R for networks with depth L = 4
and width N = 10 that are initialized to di�erent network parameters in (a) and
(b), respectively. A normalized histogram (blue) of the network output for a dataset
of size D = 104 acts as an empirical estimate of the probability density function. We
show theoretical curves for the probability density function derived from both the linear
approximation described in Section 8.2 (dashed black line) and the Gaussian description
of the network output described in Section 2.3 (solid black line).

D̂KL(pzL, emp.‖pzL, theo., layerwise) = 0.3% compared to D̂KL(pzL, emp.‖pzL, theo., Gaussian) =
1.0%. In particular, we see that the third order cumulant can account for some of the
skewness of the empirical distribution.

However, the improved agreement between theory and simulation cannot be ob-
served consistently across networks initialized to di�erent network parameters. We show
an example in Fig. 26(b) for which both theoretical curves exhibit deviations from the
empirical distribution. The theoretical curve obtained using the linear approximation
exhibits oscillations for larger values, which results from the Hermite polynomial in the
Edgeworth expansion. Accordingly, the relative Kullback-Leibler divergence is given by
D̂KL(pzL, emp.‖pzL, theo., layerwise) = 55.6% and D̂KL(pzL, emp.‖pzL, theo., Gaussian) = 2.3%,
respectively.

We compare the relative Kullback-Leibler divergence for the linear approximation
and the Gaussian description of the network, averaged over networks initialized on
nseeds = 103 di�erent seeds. The resulting values are shown for varying network depth
L and width N in Fig. 27. In all cases, the resulting values for the linear approximation
are signi�cantly larger. Bearing in mind the logarithmic axis, we also see that the
corresponding standard error is signi�cantly larger, accounting for the larger variability
with regard to di�erent network initializations. This might be due to the Edgeworth
expansion only constituting an approximation of the corresponding probability density
function. Additionally, it might not be su�cient to take into account higher order
cumulants only up to linear order in α, as in the layerwise approximation derived in the
previous section. We further investigate the in�uence of higher order cumulants in the
following chapters.
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Figure 27: Relative Kullback-Leibler divergence for di�erent network architectures, av-
eraged over networks that are initialized on nseeds = 103 di�erent seeds. We show both
mean and corresponding standard error for varying network depth L and width N , re-
spectively. We determine theoretical values for the cumulants of the network output
using either the linear approximation described in Section 8.2 (red) or the Gaussian
description of the network described in Section 2.3 (blue).
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9 Revisiting the performance gap

When comparing training on Gaussian data statistics and training on data samples, we
discussed two classi�cation tasks for which we observed non-negligible performance gaps
between the two methods. These performance gaps probably arise because training on
data samples infers information from higher order cumulants of the input distribution
beyond mean and covariance.

In the previous chapter, we have adapted our description of the network mapping to
include higher order cumulants. By combining the expressions derived in the previous
chapter with the statistical formulation of the network loss in Section 4.1, we can in-
clude contributions from higher order cumulants when training on data statistics. With
this training method, in the following we reexamine the performance gap for both the
problem of alternating hills (see Section 9.1) and the MNIST database (see Section 9.2).

9.1 Classi�cation for the problem of alternating hills

In Section 7.1, we introduced the problem of alternating hills as an example task for
which the classwise means and covariances are identical and consequently, higher order
cumulants encode class membership. As expected, we found that training on classwise
means and covariances fails while training on data samples yields high performance
values close to the corresponding upper limit. Our hypothesis is that training on data
samples can infer information from higher order cumulants to �nd a viable solution
strategy. This hypothesis is supported by the fact that we found training on compo-
nentwise means and covariances to yield similar performance values as training on data
samples. In this case, using the de�nition of the classwise distributions as Gaussian
mixture models e�ectively entails information encoded in higher order cumulants which
can then be leveraged to �nd a viable solution strategy.

To further check our hypothesis, we use the derivations in Section 8.2 to include the
third order cumulants of the classwise distributions when training on data statistics.
The corresponding approximation of the classwise distributions is shown in Fig. 28(b).
We see that this approximation can partially account for di�erences in the classwise
distributions. However, we also see that it cannot cover the exact classwise distributions
to their full extent (see Fig. 28(a)).

For a network of depth L = 2 and width N = 10, we achieve a performance of
Pθ = 50.1%, which corresponds to assigning class labels by chance. Accordingly, the
decision boundaries implemented by the network as well as the assignment of class labels
for the corresponding decision regions do not match the optimal decision boundaries and
regions as shown in Fig. 29(a). The corresponding network loss during training tends
towards large negative values (see Fig. 29(b)), even though it should be constrained to
non-negative values according to theory. Thus, this behavior might explain the poor
performance and we therefore reexamine the network loss used during training.
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9.1. Classi�cation for the problem of alternating hills
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Figure 28: Distribution of data samples x ∈ R2 projected to the x1-axis for the problem
of alternating hills. Data samples are drawn from the Gaussian mixture model de�ned
in (81)-(83) with class labels t ∈ {0, 1} (blue, red) assigned accordingly. We show a
histogram of the full dataset of sizeD = 104. We further show the classwise distributions
(solid blue and red lines) given as the exact Gaussian mixture models in (a) as well as
an approximation including cumulants up to the third order in (b).

When training on data samples, the network loss is given as the empirical average
of the mean squared error between the network output gθ(x

(b)) and the corresponding
target label t(b) with respect to a batch B = {(x(b), t(b))}b=1,...,B of data samples

L
(
{(x(b), t(b))}b=1,...,B; θ

)
=

1

B

B∑
b=1

‖gθ(x(b))− t(b)‖2. (100)

Consequently, this quantity is non-negative.
When training on data statistics, we consider the limit of in�nitely many data

samples and rewrite the network loss as

Lstat.
(
{µkzL , Σk

zL}k=1,...,K

)
=

K∑
k=1

pk
(
tr Σk

zL + ‖µkzL − t
k‖2
)
, (101)

with µk
zL

and Σk
zL

being the classwise means and covariances of the network output.
Here, pk denotes the probability of a sample to belong to class k.

Since the above expression is determined as the limit of a series of non-negative
terms, it is also non-negative. To understand how the network loss used during training
can become negative, we study the appearing terms. As ‖µk

zL
− tk‖2 is non-negative,

this behavior is related to the trace of the covariance matrix which is given by the sum
of eigenvalues in the case of a quadratic matrix. In general, the covariance matrix is
positive de�nite which implies that its eigenvalues are all positive. Consequently, the
above expression is positive as well. We also discussed that in our Gaussian description
of the network mapping, the covariance matrix can become degenerate (see Section 2.1).
Thus, the covariance matrix can be positive semi-de�nite and its eigenvalues are non-
negative. Nonetheless, the above expression is then non-negative in both cases.

When training on data statistics, however, we determine an approximation Σk
zL, theo.

based on the data statistics of the input data. If we include higher order cumulants, but
only up to a certain order nmax ≥ 3, the resulting set of cumulants does not correspond to
a proper distribution. Thus, truncating the number of considered cumulants at nmax for
each network layer can result in a theoretical value Σk

zL, theo.
of the classwise covariance
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Figure 29: (a) Illustration of the resulting decision boundaries. All points within a
region of one color (blue, red) are assigned to the respective class label (t = 0, 1). We
show the optimal decision boundaries for solving the task (black lines) as reference.
(b) Evolution of network loss during training for a network of depth L = 2 and width
N = 10. The network was trained to solve the problem of alternating hills using the
linear approximation including cumulants up to third order as described in Section 8.2.

of the network output with a negative eigenvalue. Since the network loss is minimized
during training, this negative eigenvalue is subsequently ampli�ed as it decreases the
network loss in (101). Overall, this e�ect then leads to large negative values of the
network loss during training on data statistics. In this case, the theoretical description
of the network does not �t the network mapping and in consequence, training on data
statistics yields poor performance values.

For the Gaussian description of the network mapping described in Section 2.3, this
issue does not arise: In each layer, the layer input is taken to be Gaussian distributed.
The expressions used to determine a theoretical value for the covariance of the layer
output are exact for Gaussian distributed input data, thus again yielding a covariance
matrix that is positive semi-de�nite. Approximating the distribution of the layer output
as Gaussian at all layers corresponds to a proper distribution, in particular for the
description of the network output. Consequently, the network loss used in training on
Gaussian data statistics is constrained to non-negative values.

Based on these observations, we here use a di�erent approach to include higher
order cumulants: The information regarding the class membership that is encoded
in the third order cumulant can be transferred to the covariance in a single network
layer. Hence, in the �rst network layer we take into account all contributions to the
covariance of the layer output that result from the third order cumulant of the classwise
input distributions as derived in Section 8.1. In all subsequent network layers, we
use a Gaussian description of the network mapping. Thus, we iteratively determine
theoretical values for mean and covariance of the network output zL according to

µzl, r = (W l µyl + bl)r,

µyl+1, r = µzl, r + α (µzl, r)
2 + αΣzl, rr

}
for l = 0, . . . , L− 1

µzL, r = (WL µyL + bL)r,
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Σzl, rs =
(
W l Σyl (W l)T

)
rs
,

Σyl+1, rs = Σzl, rs + 2α
(
µzl, r Σzl, rs + µzl, s Σzl, sr

)
+ 2α2 (Σzl, rs)

2 + 4α2 µzl, r Σzl, rs µzl, s

+ δ0l α
(
G

(3)

zl, (r, s, s)
+G

(3)

zl, (s, r, r)

)
+ δ0l 2α

2
(
G

(1)

zl, (r)
G

(3)

zl, (r, s, s)
+G

(1)

zl, (s)
G

(3)

zl, (s, r, r)

)


for l = 0, . . . , L− 1

ΣzL, rs =
(
WL ΣyL (WL)T

)
rs
,

G
(3)
z0, (r, s, t)

=
∑
u, v, w

(W 0)r u (W 0)s v (W 0)t wG
(n)
x, (u, v, w).

We train networks based on these relations and average the achieved performance
values over networks that are initialized on nseeds = 102 di�erent seeds. We compare
the obtained results to the achieved performance values when training either on data
samples or on classwise means and covariances. The results are collectively presented
in Fig. 30 for network architectures of di�erent depth L and width N . We see that
training on classwise higher order cumulants beyond mean and covariance yields high
performance values. With increasing network depth L, classi�cation performance de-
creases as shown in Fig. 30(a). This probably results from the decrease in accuracy of
the description of the network mapping for deeper networks. Transitioning to broader
networks mitigates this e�ect as shown in Fig. 30(b), which is again in line with theory
as discussed in Section 2.3. All in all, we see that the performance gap between training
on data samples and training on data statistics can be bridged by including higher order
cumulants beyond mean and covariance.
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Figure 30: Achieved classi�cation performance for di�erent network architectures, av-
eraged over networks that are initialized on nseeds = 102 di�erent seeds. The networks
were trained using di�erent training methods to solve the problem of alternating hills.
We show both mean and corresponding standard error. The theoretical performance
limit of Pmax = 98.0% (gray dashed line) and the performance value of Pchance = 50%
corresponding to assignment by chance (gray dotted line) are given as references.

The case L = 1 forms an exception with regard to these observations: Neither of the
training methods discussed here yields a network mapping that solves the given task.
In fact, this network architecture and in particular the quadratic activation function
together with the used loss function are not powerful enough to leverage information
from higher order cumulants beyond mean and covariance of each class to separate these
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9.2. Classi�cation on MNIST

classes. We discuss this e�ect in more detail in Chapter 10.
Lastly, we point out that generally cumulants of fourth order in addition to third

order contribute in the �rst network layer and therefore need to be taken into account
to ensure that the resulting covariance matrix is positive semi-de�nite (see Eq. (92)
in Section 8.1). However, network training did not behave as expected when using
an accordingly adapted method and did not succeed at �nding a solution strategy
that solves the given task. This shortfall is probably due to numerical issues of the
used implementation. Nonetheless, for this particular task the above description of
the network mapping consistently yields proper values for mean and covariance of the
network output. Therefore, in this thesis we presented the above approach including
only cumulants up to third order.

9.2 Classi�cation on MNIST

For the MNIST database, we found in Section 6.2 that, while training on Gaussian data
statistics yields high performance values, there remains a non-negligible performance
gap compared to training on data samples for the same reason as discussed in the
previous section. We used either of the two presented methods that include the third
order cumulant when training networks on the cumulants of the network input. In both
cases, we faced the issue of a negative network loss which resulted in poor performance
values. As discussed in the previous section, we would need to take into account the
fourth order cumulant to resolve this issue.

However, higher order cumulants are in general computationally expensive with re-

spect to the required memory: For a cumulant G
(n)
x of order n, the total number of

entries is given by dnin with din being the dimensionality of the input data x ∈ Rdin .
Thus, this quantity scales exponentially with the cumulant order n which can be prob-
lematic, in particular for high-dimensional input spaces. For the MNIST database, the
dimensionality of the input data is din = 784. Consequently, storing a single cumulant
of fourth order requires approximately 1.5 TB memory and is thus not feasible.

A possible approach for reducing memory requirements is to decrease the dimen-
sionality din of the input space. Many pixels at the image edges do not encode any
information regarding the class membership, as can be seen in Fig. 31(a), and can
therefore be omitted. Thus, for each image we remove a certain amount of pixels,
thereby reducing the dimensionality din of the input space. The pixel positions to be
excluded are selected randomly to eliminate any bias. To preferably remove pixels at the
edges, we weight all pixel positions according to a two-dimensional zero-mean Gaussian
distribution with variance σ2 = 0.1 in each direction that is discretized on a 28×28 grid
of the unit cell [−1, 1]2. A certain fraction of pixel positions is then randomly selected
according to this weighting (see Fig. 31(b)) and the corresponding pixels are removed
from all images as illustrated in Fig. 31(c).

We assess how the classi�cation performance is a�ected when applying the above
pre-processing to the data prior to network training. We train networks of depth L = 1
and width N = 100 using either training on data samples or training on Gaussian data
statistics. The achieved classi�cation performance averaged over networks that are
initialized on nseeds = 10 di�erent seeds is shown in Fig. 32. Up to a certain fraction of
removed pixels, the performance values are approximately constant for training on data
samples and even increase slightly for training on Gaussian data statistics. A possible
explanation for the latter e�ect might be that removing pixels can reduce redundancy
in the input data and thus facilitate �nding an optimal solution strategy. However,
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(a) (b) premoved = 0.4     premoved = 0.8 (c) premoved = 0.4     premoved = 0.8

Figure 31: Illustration of data pre-processing in the case of the digit three. (a) Data
sample from training dataset. (b) Selected pixel positions for di�erent fractions premoved

of removed pixels. (c) Pre-processed data sample for di�erent fractions premoved of
removed pixels.
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Figure 32: Achieved classi�cation performance on pre-processed data from the MNIST
database, averaged over networks of depth L = 1 and width N = 100 that are initialized
on nseeds = 10 di�erent seeds. The networks were trained on either data samples (yellow)
or the classwise means and covariances (green). We show both mean and corresponding
standard error for di�erent fractions of removed pixels.

removing 60% of image pixels or more leads to a decrease in classi�cation performance,
since in this case also pixels that contain relevant information are a�ected. When
further increasing the fraction of removed pixels, the performance value for training on
data samples even drops below the achieved performance for training on Gaussian data
statistics without data pre-processing. Thus, premoved = 60% is a suitable choice for
training on data statistics when including higher order cumulants. Unfortunately, this
choice still requires about 38.4 GB memory to store a single cumulant of fourth order,
making this approach infeasible as well.

Other approaches to further reduce the dimensionality of the input space are apply-
ing a principal component analysis (PCA) [30] or auto-encoders [31] to the input data.
Furthermore, we saw in the previous section that describing the classwise distribution
as a Gaussian mixture model can account for higher order cumulants. Since both mean
and covariance are signi�cantly less expensive with regard to memory requirements than
higher order cumulants, this o�ers another promising approach. Its feasibility depends
strongly on the accuracy that can be obtained when �tting Gaussian mixture models
to the classwise distributions. We plan to investigate the approaches discussed here in
future research, but due to time constraints they are not part of this thesis.
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10 Insights into the network expres-

sivity

We studied the problem of alternating hills, which was introduced in Section 7.1 as
an example where the classwise means and covariances are identical while higher order
cumulants di�er between classes. In Section 7.2, we found that training on classwise
means and covariances fails, while training on data samples yields high performance
values. Furthermore, we showed in Section 9.1 that including higher order cumulants
when training on data statistics resolves the observed performance gap, yielding perfor-
mance values close to the theoretical upper limit of Pmax = 98.0%. This supports the
notion that training on data samples can infer information contained in higher order
cumulants.

However, we saw that networks of depth L = 1 on average yield performance val-
ues of Pθ ≈ 50% when trained with either of the above-mentioned methods, which
corresponds to assigning class labels by chance. This observation raises the question
whether such shallow network architectures can e�ectively leverage information con-
tained in higher order cumulants beyond mean and covariances. Therefore, in this
section we study which information is available to a certain network architecture with
regard to the cumulants of the input data.

To this end, we reexamine the transformation of cumulants of arbitrary order by
the quadratic term of the activation function φ(z) on a conceptual level. We use the
graphical representation of the quadratic term as a two-point interaction vertex as
described in Section 2.2. This interaction vertex can act in two ways, either joining
two cumulant vertices by connecting to one internal line of each vertex, or modifying
a single cumulant vertex by connecting two of its internal lines with one another. The
order of the cumulant that is generated by the �rst operation is then given by n+n′−1,
with n and n′ being the orders of the joined cumulant vertices. In contrast, the second
operation reduces the order n of the cumulant vertex by one, yielding a contribution to
the cumulant of order n− 1. In terms of Feynman diagrams, these two operations can
be depicted as follows for y = φ(z):

. . . . . .
7→

. . . . . .

G(n)
z , G(n′)

z 7→ G(n+n′−1)
y

(102)
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. . .
7→

. . .

G(n)
z 7→ G(n−1)

y

(103)

Additionally, these operations can be combined and applied multiple times under the
condition that the resulting Feynman diagram obeys the rules for composing such dia-
grams.

To address which information is available to the network in terms of the cumulants
of the input data, we study the network loss used during training. For training on data
samples, this quantity is given by the sample mean of the loss function `(x, t; θ) with
respect to a batch of data samples B = {(x(b), t(b))}b=1,...,B. In this thesis, we chose the
mean squared error as loss function `(x, t; θ) = ‖gθ(x)− t‖2. In Section 4.1, we derived
that in the limit of in�nitely many data samples the network loss can be written as

Lstat.
(
{µkzL , Σk

zL}k=1,...,K

)
=

K∑
k=1

pk
(
tr Σk

zL + ‖µkzL − t
k‖2
)
,

with µk
zL

and Σk
zL

being the classwise means and covariances of the network output
zL. Since network training aims at minimizing the network loss with respect to the
network parameters, the network loss governs which information is used during training.
Therefore, we e�ectively need to study the dependence of the appearing quantities on

the order n of the classwise cumulants G
(n), k
x of the input data. To keep the notation

concise, in the following we drop the class index k.
For a network of depth L = 1, in Section 2.1 and Section 8.1 we derived the following

dependencies

µz1 = fµ
(
{µx, Σx}; θ

)
, (104)

Σz1 = fΣ

(
{µx, Σx, G

(3)
x , G(4)

x }; θ
)
. (105)

These results can also be understood in terms of the operations in (102) and (103).
Since we are interested in the information available, we focus on the latter operation,

which reduces the order of a cumulant by precisely one: In the case of a cumulant G
(n)
z

of order n, we can attach at most bn2 c two-point interaction vertices in a single appli-
cation of the quadratic activation function. This yields a contribution to the cumulant

G
(ñ)
y of the transformed data y = φ(z) at order ñ = bn+1

2 c. Furthermore, we have a

contribution from G
(n)
z to G

(n)
y resulting from the linear term of the quadratic activa-

tion function φ(z). Taking into account all possibilities of attaching an intermediate

number of two-point interaction vertices, we see that G
(n)
z yields contributions to all

cumulants G
(ñ)
y of order ñ = bn+1

2 c, . . . , n. By reversing this argumentation, we get

G
(n)
y = f

(
{G(n)

z , . . . , G
(2n)
z }; α

)
.

For arbitrary orders n′ < n, we get a contribution to the cumulant G
(n)
y of order

n by applying the operation in (102) to G
(n′)
z and G

(n−n′+1)
z . Overall, we thus get

G
(n)
y = f

(
{G(1)

z , . . . , G
(2n)
z }; α

)
.

Iterating this relation for a network of depth L, which corresponds to applying the
quadratic activation function φ(z) exactly L times, yields

µzL = fµ
(
{G(n)

x }n=1, ..., 2L ; θ
)
, (106)
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ΣzL = fΣ

(
{G(n)

x }n=1, ..., 2L+1 ; θ
)
. (107)

Thus, the maximal order of a cumulantG
(n)
x of the input data that enters during training

is given by nmax,Σ
zL

= 2L+1.
However, the method to assign predicted class labels used in this thesis requires the

classwise means to be separated in the output space. Hence, it is not su�cient to have a
network mapping that yields di�erent covariances for each class. Instead, the methods
used in this thesis require the classwise means to di�er from one another. Consequently,
a necessary condition to obtain high performance values is that at least one cumulant of
order nmax, µ

zL
= 2L or lower contains su�cient information to solve the given task. In

general, the fact that both nmax, µ
zL

and nmax,Σ
zL

scale exponentially with the network
depth L o�ers an explanation why adding a network layer can signi�cantly improve the
achievable classi�cation performance.

These considerations allow us to understand the results obtained for networks of
depth L = 1 for the problem of alternating hills in Section 7.2. In this case, the classwise
means of the network output depend solely on the classwise means and covariances of
the input data. Since these two quantities are identical for the two classes in this
particular setup, networks of depth L = 1 cannot separate the two data classes in the
network output and are thus not powerful enough to solve this task. This explanation
is not to be confused with the argumentation for why training on classwise means
and covariances cannot solve this task for any network architecture. This shortcoming
results from using the description of the network as a non-linear mapping of mean and
covariance for this speci�c training method. In this section, however, we consider the
computational properties of the network mapping.

Lastly, we point out that the above relations strongly depend on various aspects: On
the one hand, the chosen activation function and more precisely its polynomial order,
if applicable, determine the maximal order of the input distribution's cumulants that
yield contributions to a particular cumulant of the network output.

As an example, we consider the case of an additional cubic term in the activa-
tion function where φ̃(z) = z + α z2 + β z3. This introduces a three-point interac-
tion vertex, which can reduce the order of a cumulant by at most two. Thus, it is

G
(n)
y = f

(
{G(1)

z , . . . , G
(3n)
z }; α, β

)
and the above results become

µzL = fµ
(
{G(n)

x }n=1, ..., 3L ; θ
)
, (108)

ΣzL = fΣ

(
{G(n)

x }n=1, ..., 3L+1 ; θ
)
. (109)

On the other hand, the chosen loss function determines the cumulants of the network
output that arise and their relative dependence when evaluating the network loss in the
limit of in�nitely many data samples (see Section 4.1). In the case of the mean squared
error, the classwise mean and covariance of the network output enter in an uncoupled
manner. For other loss functions, higher order cumulants might occur and cumulants
of arbitrary order may be coupled to one another in a non-linear manner.

Furthermore, the achievable performance is used as a measure for the expressivity
of a particular network architecture. Since the method for performance evaluation can
di�er from the chosen network loss, its relations to the cumulants of the network output
and to the network loss need to be taken into account.

All in all, the considerations presented here show that the joint description of net-
work mapping and network loss that was derived in this thesis can o�er explanations
for di�erences in the network expressivity. As intuitively expected, these di�erences are
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attributable to network architecture, training dynamics and performance evaluation as
well as the interplay of these aspects.
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Conclusion and Outlook

Despite many successes in recent years, deep neural networks are still lacking in trans-
parency and interpretability. Obtaining an understanding of the mechanisms that neural
networks employ to solve a given task is an important step towards making neural net-
works reliable tools in sensitive areas such as medical applications. Two main aspects in
that regard are the functional principles of solution strategies that are learned by neural
networks and the information utilized in these solution strategies. For supervised learn-
ing problems such as classi�cation tasks, knowledge of the joint probability distribution
of data samples and class labels allows the identi�cation of a solution method that
maximizes the average number of correctly classi�ed data samples. Neural networks
learn a solution strategy by inferring information from pairs of a data sample and corre-
sponding target label so that they e�ectively rely on an empirical estimate of this joint
distribution. Therefore, in this thesis we investigated how the information contained in
the distribution of the input data, which we expressed in terms of its cumulants, enters
in solution strategies learned by neural networks.

We here put our focus on classi�cation tasks as these are common examples in
machine learning. Furthermore, class membership is often to a large extent encoded in
mean and covariance of the corresponding class. Thus, we can generally approximate
the input distribution as a Gaussian mixture model with one component for each class.
Based on this, a large part of this thesis was concerned with the transformation of
Gaussian data statistics by neural networks. In a second part, we explored the in�uence
of higher order cumulants beyond mean and covariance.

To solve a given classi�cation task, we used feed forward networks with a quadratic
activation function (see Chapter 1). These networks are hierarchically structured by
network layers and therefore we traced the transformation of cumulants iteratively from
layer to layer (see Chapter 2). For Gaussian distributed layer input, we derived exact
expressions that describe the non-linear recombination of mean and covariance when
applying a single network layer. Additionally, higher order cumulants are generated,
thus rendering the resulting distribution of the layer output non-Gaussian. According
to the disorder average, however, non-Gaussian terms scale down with the network
width so that we can approximate the distribution at intermediate layers as Gaussian
(see Appendix A.1). Thus, we obtained a description of the network as a non-linear
mapping of mean and covariance. Using the relative Kullback-Leibler divergence as an
accuracy measure, we found that the resulting theoretical curves for the probability
density function of the network output agree well with the empirical results for both
untrained and trained networks.

However, approximation errors due to neglecting higher order cumulants accumu-
late for deeper network architectures, leading to increased deviations between theory
and simulation. This increase in deviations arises in particular for trained networks,
as network training introduces dependencies among network parameters, whereas the
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disorder average requires the network parameters to be independent from one another.
Therefore, we adapted our description of the network mapping to include higher order
cumulants consistently in each network layer (see Chapter 8). To this end, we deter-
mined corrections to the expressions for Gaussian distributed input data by using an
expansion in terms of Feynman diagrams, which is a well-established method from sta-
tistical physics. We found that this adaptation can account for certain features such as
skewness in the distribution of the network output, but does not consistently result in
a higher accuracy of our theoretical description of the network mapping with respect to
di�erent network initializations. Furthermore, for certain choices of network parameters,
the theoretical values for the covariance turned out negative because the approximation
used in each layer does not necessarily correspond to a proper distribution.

As an approach to include higher order cumulants while ensuring that these belong
to a proper distribution, we propose using a Gaussian mixture model in future work
to describe the distribution at intermediate layers. This o�ers an elegant method to
represent higher order cumulants [32], at least to a certain extent. Furthermore, this
approach might allow us to obtain cohesive expressions to describe the transformation
of cumulants by the network. An ensuing question is the number of mixture components
necessary to match cumulants up to a certain order with a given accuracy. The overall
number of mixture components used in the description of the network output then
scales exponentially with this quantity. Thus, it might act as a complexity measure of
the resulting distribution and possibly relate to the expressivity of a particular network
architecture.

Throughout this thesis, we looked at three di�erent classi�cation tasks to study
the accuracy of our network description in the case of trained networks as well as the
solutions strategies implemented by these networks. As a �rst task, we introduced an
adaptation of the XOR problem, which is a classical problem in machine learning (see
Chapter 3). Since this problem is not linearly separable, it requires the use of a non-
linear activation function and thus allows to study the in�uence of the non-linearity on
the learned solution strategy. Furthermore, it constitutes an example task for which
mean and covariance of each class contain su�cient information to solve this task. Thus,
these quantities form a potential basis for viable solution strategies to this task.

To target the question of which information is required by the network, we de-
veloped a training method that allows us to directly train on cumulants of the input
distribution (see Chapter 4): In the limit of in�nitely many data samples, we derived
an expression for the network loss used during training on data samples in terms of
mean and covariance of the network output. Using the above results regarding the
transformation of cumulants by the network, we can approximate the cumulants of the
network output as functions of the cumulants of the network input and the network
parameters. Combining these results allows us to train directly on cumulants of the
input distribution.

For our adaptation of the XOR problem, we found that training on classwise means
and covariances yields high performance values (see Chapter 5). This result con�rms
that the contained information is su�cient to be used for �nding a viable solution strat-
egy. Moreover, it shows that our description of the network as a non-linear mapping of
mean and covariance is su�ciently accurate to serve as an adequate representation dur-
ing training. Furthermore, for this task we found that there exist di�erent information
coding paradigms that can be used by the network to �nd a viable solution strategy.
For a particular network architecture, we showed that the network �nds at least two
di�erent solution strategies and studied how these relate to one another. We plan to
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extend the investigation of these information coding paradigms and their dependence
on di�erent network initializations and architectures.

As a second task, we considered the MNIST database as an example of a non-
synthetic dataset (see Chapter 6). In this case, a large proportion of the variability
within each class can be accounted for by approximating the classwise input distribu-
tions as Gaussian. Accordingly, we found that training on classwise means and covari-
ances already yields high performance values. However, there remained a non-negligible
performance gap in comparison to training on data samples. This performance gap prob-
ably results from training on data samples being able to infer additional information
contained in higher order cumulants. Taking these into account in a consistent manner
necessitates cumulants up to the fourth order at the very least. However, the corre-
sponding memory requirements scale exponentially with the cumulant order and are
thus problematic for high-dimensional input spaces such as MNIST. Even after reduc-
ing the input dimensionality by removing less informative dimensions to an extent that
only slightly a�ected classi�cation performance, memory requirements still exceeded the
resources at our disposal (see Chapter 9). We discussed above that describing the data
distribution at intermediate layers as a Gaussian mixture model can account for higher
order cumulants. This method can also be applied to the distribution of the input data.
Since mean and covariance require signi�cantly less memory, this o�ers a promising
approach to take into account higher order cumulants, which we plan to investigate in
the future.

Finally, we constructed a classi�cation task to study the in�uence of higher order
cumulants in more detail (see Chapter 7). For this task, mean and covariance of both
classes are identical and consequently, the class membership is encoded in higher order
cumulants. We de�ned the distribution of the input data as a Gaussian mixture model
and named this task the problem of alternating hills due to its geometric layout. As
expected, training on classwise means and covariances does not �nd a suitable solu-
tion while training on data samples achieves high performance values. We were able
to bridge this performance gap by including the third order cumulant when training
on data statistics since the third order cumulant encodes class membership (see Chap-
ter 9). Alternatively, we can use the de�nition of the input distribution as a Gaussian
mixture model to train on Gaussian data statistics but nevertheless account for higher
order cumulants of the classwise distributions. For the problem of alternating hills,
this method yields high performance values, further supporting such an approach for
MNIST.

However, networks with a single non-linear layer did not �nd a viable solution for
the problem of alternating hills when using either of the training methods discussed be-
forehand. Since we saw that including the third order cumulant is su�cient to achieve
high performance values, we studied whether this particular network architecture is lim-
ited with respect to inferring information contained in higher order cumulants beyond
mean and covariance. Based on the functional structure of Feynman diagrams, we de-
termined the maximal cumulant orders that a�ect mean and covariance of the network
output (see Chapter 10). In general, these two quantities together drive network train-
ing. However, a high classi�cation performance necessitates a separation of means for
the two classes. For a network with a single non-linear layer, the third order cumulant
of the network input a�ects the covariance of the network output, but the mean of
the network output depends solely on mean and covariance of the network input. As
these two quantities are identical for both classes, this particular network architecture
is indeed not powerful enough to solve the problem of alternating hills. Beyond this
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example, these considerations allow us to gain insights into the network expressivity
in terms of the information inferable for di�erent network architectures. In particular,
we saw that the network expressivity depends on di�erent aspects such as choice of
activation function, network loss or performance evaluation. In future work, we plan to
investigate how these results relate to previous research on this topic, such as Raghu et
al., 2017 [33], and Safran et al., 2020 [34].

Lastly, we point out that this thesis is embedded in a project that studies invertible
neural networks and possible applications to medical data [35]. One example of such
applications in previous studies is the analysis of EEG data [36, 8]. Due to their invert-
ibility, these networks do not only allow processing data, but also generating synthetic
data samples based on the learned network mapping [37]. From these synthetic data
samples, it is possible to discern features learned by the network [38]. Furthermore, we
can prescribe the distribution of the network output during network training, which is
typically chosen to be Gaussian. Thus, by using the inverse mapping, we can study how
the distribution of the input data is composed. Since feed forward networks often form
building blocks in such network architectures [39, 40], we hope to extend the results
obtained in this thesis to invertible neural networks.
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A Appendix

A.1 Disorder average for broad networks

The application of a quadratic activation function φ(z) in each network layer generates
higher order cumulants from Gaussian distributed layer input, as derived in Section 2.1.
For broad networks, we can however perform a disorder average with regard to the net-
work parameters θ, by which follows that higher order cumulants of the pre-activations
z beyond mean and covariance scale down with the layer width Nl. Consequently, these
become negligible for broad networks where Nl � 1.

We assume the network parameters θ = {W l, bl}l=0,...,L to be Gaussian distributed
with

wlrs
i.i.d.∼ N

(
0,

σ2
w

Nl−1

)
, (110)

blr
i.i.d.∼ N

(
0, σ2

b

)
. (111)

This choice of initialization ensures that the magnitude of the covariance is preserved
within the network as it does not scale with the layer width

〈Σzl, rs〉θ =
〈(
W l Σyl (W l)T

)
rs

〉
θ

(112)

=

〈Nl−1∑
t, u=1

wlrtw
l
su Σyl, tu

〉
θ

(113)

= δrs
σ2
w

Nl−1

Nl−1∑
t=1

Σyl, tt (114)

= δrsONl−1
(1). (115)

According to the central limit theorem, a properly normalized sum of independent
random variables tends toward a Gaussian distribution [41]. We apply this idea to the
a�ne linear transformation in each layer, which is given by

zlr =

Nl−1∑
s=1

wlrs y
l
s + blr. (116)

We investigate the dependence of the corresponding cumulants G
(n)

zl
on the layer width

Nl−1 by taking the average with regard to the network parameters θ. As these are
independently distributed, we can perform the average layerwise. For Gaussian input
data, we have in the �rst network layer

〈µz0, rs〉θ ∝ 〈w0
rs〉W 0 + 〈b0r〉b0 = 0, (117)
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A.2. Approximate series expansion of the ReLU function

〈Σz0, rs〉θ = δrsOdin(1). (118)

In consequence, the expressions in (20) (see Section 2.1) yield〈
G

(n)

yl, (r1,...,rn)

〉
θ
∝ δr1,...rn . (119)

After applying the a�ne linear transformation in the next layer, cumulants of odd order
vanish since

〈
G

(n)

zl, (r1,...,rn)

〉
θ

=

〈 Nl−1∑
s1,...,sn=1

wlr1 s1 . . . w
l
rn sn G

(n)

yl, (s1,...,sn)
+ δ1nb

l
r1

〉
θ

(120)

∝ 〈wlr1s1〉W l + δ1n 〈blr1〉bl = 0. (121)

For even orders, it follows with (119) that

〈
G

(n)

zl, (r1,...,rn)

〉
θ

=

〈 Nl−1∑
s1,...,sn=1

wlr1 s1 . . . w
l
rn sn G

(n)

yl, (s1,...,sn)

〉
θ

(122)

=

Nl−1∑
s=1

〈
wlr1 s . . . w

l
rn s

〉
W l

〈
G

(n)

yl, (s,...,s)

〉
θ′

(123)

= O

((
σ2
w

Nl−1

)n
2

Nl−1

)
(124)

= O
(

(Nl−1)−
n
2

+1
)
. (125)

Thus, cumulants beyond second order become negligible for Nl−1 � 1 and the distri-
bution at intermediate layers can be approximated as a Gaussian.

A.2 Approximate series expansion of the ReLU function

In this section, we investigate the relationship between the ReLU function and the
quadratic activation function used in this thesis by deriving an approximate series ex-
pansion of the former. As ReLU(z) = max(0, z), we approximate the maximum function
and get

ReLU (z) ≈ z

1 + exp (−γ z)
for γ � 1. (126)

The logistic function which appears in the expression above can be rewritten as

1

1 + exp (−z)
=

1

2

[
1 + tanh

(z
2

)]
(127)

=
1

2
+

∞∑
n=1

(2n − 1) B2n

(2n)!
z2n−1, (128)

where we used the Taylor series of tanh(z) which holds for |z| < π
2 [42]. Here, Bn refers

to the nth Bernoulli number [43]. Thus, we get

z

1 + exp (−γ z)
=

1

2
z +

∞∑
n=1

(2n − 1) B2n

(2n)!
γ2n−1 x2n. (129)
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A.3. Diagrammatic resummation for Gaussian input data

Taking into account only leading order terms, we have

ReLU (z) ≈ 1

2
z +

γ

4
z2 − γ3

48
z4 +O

(
γ5 z6

)
. (130)

Since we assume γ � 1 in (126), the range for which this expression gives a reasonable
approximation is constrained to values close to zero and highly dependent on the choice
of γ. Nonetheless, we see that ReLU(z) can be described by a quadratic function in
leading orders.

A.3 Diagrammatic resummation for Gaussian input data

In Section 2.1, we studied the transformation of Gaussian distributed input data by a
single network layer with quadratic activation function. We derived exact expressions
for the cumulants of the layer output by analytically calculating the corresponding
cumulant-generating function. An alternative approach to determine the cumulants
of the layer output is an expansion of the cumulant-generating function in terms of
Feynman diagrams as described in Section 2.2. We here present how the expressions in
Section 2.1 for cumulants of arbitrary order can be derived by using Feynman diagrams.

To this end, we compare the diagrammatic contributions in (23)(c) and (24)(c) to
mean and covariance of the layer output, respectively, which are given by:

µy, r: αΣz, rr Σy, rs: 2α2 (Σz, rs)
2

= =

(131)

We see that these diagrams exhibit the same structure. More precisely, the diagram to
the right can be generated by replacing:

7→ (132)

By repeating this operation, we obtain a Feynman diagram that yields a contribution
to the cumulant of third order:

(133)

Alternatively, this diagram can be created from the left diagram in (131) by directly
substituting:

7→ (134)

We see that we can generate Feynman diagrams contributing to cumulants of arbi-
trary order by iterating this operation. We can collectively denote this operation by
introducing an e�ective second order cumulant vertex corresponding to Σ̃z:

= + + + . . .

(135)
The resummation of the above diagrammatic components exactly corresponds to one of
the equations obtained earlier (see Eq. (19) in Section 2.1)

Σ̃z = Σz + Σz J Σz + Σz J Σz J Σz + . . . (136)
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= Σz

∞∑
k=0

(J Σz)
k (137)

=
(
Σ−1
z − J

)−1
. (138)

With the above notation, we can represent all Feynman diagrams that are generated in
this way from the left diagram in (131) as

(139)

yielding 1
2n(2α)n Σz, r1r2 . . .Σz, rnr1 as a contribution to G

(n)
y, (r1,...,rn) at order n. The

factor 1
n results from the rotational symmetry of the diagram. In Section 2.1, this con-

tribution originates from the term −1
2 tr ln (1− ΣzJ) where the trace operator accounts

for the ring structure of the diagram.
In the case of Gaussian distributed layer input, all diagrammatic contributions to

higher order cumulants can be represented by the following four diagrams:

(a) (b)

(c) (d)

(140)

For G
(n)
y, (r1,...,rn) with n ≥ 2, these diagrams yield the expressions we derived earlier (see

Eq. (20) in Section 2.1):

(a) 1
2n(2α)n Σz, r1r2 . . .Σz, rnr1 (b) (2α)n−1 µz, r1 Σz, r1r2 . . .Σz, rn−1rn

(c) 1
2 (2α)n−2 Σz, r1r2 . . .Σz, rn−1rn (d) 1

2 (2α)n µz, r1 Σz, r1r2 . . .Σz, rn−1rn µz, rn

(141)
The case of n = 1 cannot completely be accounted for as there does not appear a second
order cumulant vertex in two of the three appearing Feynman diagrams (see Eq. (23)
in Section 2.1).

Overall, we obtain a compact representation of all contributing diagrams for higher
order cumulants, which demonstrates the relation between Feynman diagrams and al-
gebraic expressions.

A.4 Detailed calculations for the variance of the network

loss for �nite datasets

In this section, we present the detailed derivation for the variance of the network loss
for �nite datasets in the case of a single target label t:

Var
((
zL
)2 − 2 zL t

)
= Var

((
zL
)2)

+ Var
(
− 2 zL t

)
+ 2 Cov

((
zL
)2
,−2 zL t

)
=
〈(
zL
)4〉

zL∼ p(zL|t)
−
〈(
zL
)2〉2

zL∼ p(zL|t)
+ 4t2 Var

(
zL
)

− 4t
〈(
zL
)3〉

zL∼ p(zL|t)
+ 4tG

(1)

zL

〈(
zL
)2〉

zL∼ p(zL|t)
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Figure 33: Distribution of the network output zL ∈ R for a network of depth L = 1
and width N = 10 that is trained to solve the XOR problem. Normalized histograms of
the network output for a test dataset of size Deval = 104 act as empirical estimates of
the probability density function. Their theoretical counterparts are given by Gaussian
distributions (solid lines) with mean and covariance calculated according to Section 2.3.
We show the individual distributions for all four components.
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