000888753 001__ 888753
000888753 005__ 20210511224936.0
000888753 0247_ $$2doi$$a10.5194/acp-20-5657-2020
000888753 0247_ $$2ISSN$$a1680-7316
000888753 0247_ $$2ISSN$$a1680-7324
000888753 0247_ $$2Handle$$a2128/26512
000888753 0247_ $$2altmetric$$aaltmetric:81919415
000888753 0247_ $$2WOS$$aWOS:000535189200006
000888753 037__ $$aFZJ-2020-05182
000888753 041__ $$aEnglish
000888753 082__ $$a550
000888753 1001_ $$00000-0002-3319-4513$$aCosta-Surós, Montserrat$$b0$$eCorresponding author
000888753 245__ $$aDetection and attribution of aerosol–cloud interactions in large-domain large-eddy simulations with the ICOsahedral Non-hydrostatic model
000888753 260__ $$aKatlenburg-Lindau$$bEGU$$c2020
000888753 3367_ $$2DRIVER$$aarticle
000888753 3367_ $$2DataCite$$aOutput Types/Journal article
000888753 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1620717953_29692
000888753 3367_ $$2BibTeX$$aARTICLE
000888753 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000888753 3367_ $$00$$2EndNote$$aJournal Article
000888753 520__ $$aClouds and aerosols contribute the largest uncertainty to current estimates and interpretations of the Earth’s changing energy budget. Here we use a new-generation large-domain large-eddy model, ICON-LEM (ICOsahedral Non-hydrostatic Large Eddy Model), to simulate the response of clouds to realistic anthropogenic perturbations in aerosols serving as cloud condensation nuclei (CCN). The novelty compared to previous studies is that (i) the LEM is run in weather prediction mode and with fully interactive land surface over a large domain and (ii) a large range of data from various sources are used for the detection and attribution. The aerosol perturbation was chosen as peak-aerosol conditions over Europe in 1985, with more than fivefold more sulfate than in 2013. Observational data from various satellite and ground-based remote sensing instruments are used, aiming at the detection and attribution of this response. The simulation was run for a selected day (2 May 2013) in which a large variety of cloud regimes was present over the selected domain of central Europe.It is first demonstrated that the aerosol fields used in the model are consistent with corresponding satellite aerosol optical depth retrievals for both 1985 (perturbed) and 2013 (reference) conditions. In comparison to retrievals from ground-based lidar for 2013, CCN profiles for the reference conditions were consistent with the observations, while the ones for the 1985 conditions were not.Similarly, the detection and attribution process was successful for droplet number concentrations: the ones simulated for the 2013 conditions were consistent with satellite as well as new ground-based lidar retrievals, while the ones for the 1985 conditions were outside the observational range.For other cloud quantities, including cloud fraction, liquid water path, cloud base altitude and cloud lifetime, the aerosol response was small compared to their natural variability. Also, large uncertainties in satellite and ground-based observations make the detection and attribution difficult for these quantities. An exception to this is the fact that at a large liquid water path value (LWP > 200 g m-²), the control simulation matches the observations, while the perturbed one shows an LWP which is too large.The model simulations allowed for quantifying the radiative forcing due to aerosol–cloud interactions, as well as the adjustments to this forcing. The latter were small compared to the variability and showed overall a small positive radiative effect. The overall effective radiative forcing (ERF) due to aerosol–cloud interactions (ERFaci) in the simulation was dominated thus by the Twomey effect and yielded for this day, region and aerosol perturbation −2.6 W m-². Using general circulation models to scale this to a global-mean present-day vs. pre-industrial ERFaci yields a global ERFaci of −0.8 W m-².
000888753 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000888753 536__ $$0G:(DE-Juel1)jjsc31_20191101$$aHigh-resolution simulations with the ICON large eddy model (jjsc31_20191101)$$cjjsc31_20191101$$fHigh-resolution simulations with the ICON large eddy model$$x1
000888753 588__ $$aDataset connected to CrossRef
000888753 7001_ $$00000-0002-2822-5303$$aSourdeval, Odran$$b1
000888753 7001_ $$0P:(DE-HGF)0$$aAcquistapace, Claudia$$b2
000888753 7001_ $$00000-0002-2316-8960$$aBaars, Holger$$b3
000888753 7001_ $$00000-0002-3408-5925$$aCarbajal Henken, Cintia$$b4
000888753 7001_ $$0P:(DE-HGF)0$$aGenz, Christa$$b5
000888753 7001_ $$0P:(DE-HGF)0$$aHesemann, Jonas$$b6
000888753 7001_ $$00000-0002-2776-0339$$aJimenez, Cristofer$$b7
000888753 7001_ $$00000-0002-0342-7611$$aKönig, Marcel$$b8
000888753 7001_ $$00000-0002-8013-5831$$aKretzschmar, Jan$$b9
000888753 7001_ $$0P:(DE-HGF)0$$aMadenach, Nils$$b10
000888753 7001_ $$0P:(DE-Juel1)156465$$aMeyer, Catrin I.$$b11
000888753 7001_ $$0P:(DE-HGF)0$$aSchrödner, Roland$$b12
000888753 7001_ $$00000-0002-5626-3761$$aSeifert, Patric$$b13
000888753 7001_ $$00000-0003-1685-2657$$aSenf, Fabian$$b14
000888753 7001_ $$00000-0002-8830-8506$$aBrueck, Matthias$$b15
000888753 7001_ $$0P:(DE-HGF)0$$aCioni, Guido$$b16
000888753 7001_ $$0P:(DE-HGF)0$$aEngels, Jan Frederik$$b17
000888753 7001_ $$0P:(DE-HGF)0$$aFieg, Kerstin$$b18
000888753 7001_ $$0P:(DE-HGF)0$$aGorges, Ksenia$$b19
000888753 7001_ $$0P:(DE-HGF)0$$aHeinze, Rieke$$b20
000888753 7001_ $$0P:(DE-HGF)0$$aSiligam, Pavan Kumar$$b21
000888753 7001_ $$00000-0002-0742-7176$$aBurkhardt, Ulrike$$b22
000888753 7001_ $$0P:(DE-HGF)0$$aCrewell, Susanne$$b23
000888753 7001_ $$00000-0003-2827-5789$$aHoose, Corinna$$b24
000888753 7001_ $$00000-0001-9760-3550$$aSeifert, Axel$$b25
000888753 7001_ $$00000-0003-3700-3232$$aTegen, Ina$$b26
000888753 7001_ $$00000-0001-7057-194X$$aQuaas, Johannes$$b27
000888753 773__ $$0PERI:(DE-600)2069847-1$$a10.5194/acp-20-5657-2020$$gVol. 20, no. 9, p. 5657 - 5678$$n9$$p5657 - 5678$$tAtmospheric chemistry and physics$$v20$$x1680-7324$$y2020
000888753 8564_ $$uhttps://juser.fz-juelich.de/record/888753/files/acp-20-5657-2020.pdf$$yOpenAccess
000888753 909CO $$ooai:juser.fz-juelich.de:888753$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000888753 9101_ $$0I:(DE-HGF)0$$60000-0002-3319-4513$$aExternal Institute$$b0$$kExtern
000888753 9101_ $$0I:(DE-HGF)0$$60000-0002-2822-5303$$aExternal Institute$$b1$$kExtern
000888753 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b2$$kExtern
000888753 9101_ $$0I:(DE-HGF)0$$60000-0002-2316-8960$$aExternal Institute$$b3$$kExtern
000888753 9101_ $$0I:(DE-HGF)0$$60000-0002-3408-5925$$aExternal Institute$$b4$$kExtern
000888753 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b5$$kExtern
000888753 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b6$$kExtern
000888753 9101_ $$0I:(DE-HGF)0$$60000-0002-2776-0339$$aExternal Institute$$b7$$kExtern
000888753 9101_ $$0I:(DE-HGF)0$$60000-0002-0342-7611$$aExternal Institute$$b8$$kExtern
000888753 9101_ $$0I:(DE-HGF)0$$60000-0002-8013-5831$$aExternal Institute$$b9$$kExtern
000888753 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b10$$kExtern
000888753 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156465$$aForschungszentrum Jülich$$b11$$kFZJ
000888753 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b12$$kExtern
000888753 9101_ $$0I:(DE-HGF)0$$60000-0002-5626-3761$$aExternal Institute$$b13$$kExtern
000888753 9101_ $$0I:(DE-HGF)0$$60000-0003-1685-2657$$aExternal Institute$$b14$$kExtern
000888753 9101_ $$0I:(DE-HGF)0$$60000-0002-8830-8506$$aExternal Institute$$b15$$kExtern
000888753 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b16$$kExtern
000888753 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b17$$kExtern
000888753 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b18$$kExtern
000888753 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b19$$kExtern
000888753 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b20$$kExtern
000888753 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b21$$kExtern
000888753 9101_ $$0I:(DE-HGF)0$$60000-0002-0742-7176$$aExternal Institute$$b22$$kExtern
000888753 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b23$$kExtern
000888753 9101_ $$0I:(DE-HGF)0$$60000-0003-2827-5789$$aExternal Institute$$b24$$kExtern
000888753 9101_ $$0I:(DE-HGF)0$$60000-0001-9760-3550$$aExternal Institute$$b25$$kExtern
000888753 9101_ $$0I:(DE-HGF)0$$60000-0003-3700-3232$$aExternal Institute$$b26$$kExtern
000888753 9101_ $$0I:(DE-HGF)0$$60000-0001-7057-194X$$aExternal Institute$$b27$$kExtern
000888753 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000888753 9132_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000888753 9141_ $$y2020
000888753 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-03
000888753 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-03
000888753 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000888753 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bATMOS CHEM PHYS : 2018$$d2020-09-03
000888753 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bATMOS CHEM PHYS : 2018$$d2020-09-03
000888753 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-09-03
000888753 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-09-03
000888753 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-03
000888753 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-09-03
000888753 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-03
000888753 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000888753 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2020-09-03
000888753 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2020-09-03
000888753 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-09-03
000888753 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-03
000888753 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-03
000888753 920__ $$lyes
000888753 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000888753 980__ $$ajournal
000888753 980__ $$aVDB
000888753 980__ $$aI:(DE-Juel1)JSC-20090406
000888753 980__ $$aUNRESTRICTED
000888753 9801_ $$aFullTexts