001     888753
005     20210511224936.0
024 7 _ |a 10.5194/acp-20-5657-2020
|2 doi
024 7 _ |a 1680-7316
|2 ISSN
024 7 _ |a 1680-7324
|2 ISSN
024 7 _ |a 2128/26512
|2 Handle
024 7 _ |a altmetric:81919415
|2 altmetric
024 7 _ |a WOS:000535189200006
|2 WOS
037 _ _ |a FZJ-2020-05182
041 _ _ |a English
082 _ _ |a 550
100 1 _ |a Costa-Surós, Montserrat
|0 0000-0002-3319-4513
|b 0
|e Corresponding author
245 _ _ |a Detection and attribution of aerosol–cloud interactions in large-domain large-eddy simulations with the ICOsahedral Non-hydrostatic model
260 _ _ |a Katlenburg-Lindau
|c 2020
|b EGU
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1620717953_29692
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Clouds and aerosols contribute the largest uncertainty to current estimates and interpretations of the Earth’s changing energy budget. Here we use a new-generation large-domain large-eddy model, ICON-LEM (ICOsahedral Non-hydrostatic Large Eddy Model), to simulate the response of clouds to realistic anthropogenic perturbations in aerosols serving as cloud condensation nuclei (CCN). The novelty compared to previous studies is that (i) the LEM is run in weather prediction mode and with fully interactive land surface over a large domain and (ii) a large range of data from various sources are used for the detection and attribution. The aerosol perturbation was chosen as peak-aerosol conditions over Europe in 1985, with more than fivefold more sulfate than in 2013. Observational data from various satellite and ground-based remote sensing instruments are used, aiming at the detection and attribution of this response. The simulation was run for a selected day (2 May 2013) in which a large variety of cloud regimes was present over the selected domain of central Europe.It is first demonstrated that the aerosol fields used in the model are consistent with corresponding satellite aerosol optical depth retrievals for both 1985 (perturbed) and 2013 (reference) conditions. In comparison to retrievals from ground-based lidar for 2013, CCN profiles for the reference conditions were consistent with the observations, while the ones for the 1985 conditions were not.Similarly, the detection and attribution process was successful for droplet number concentrations: the ones simulated for the 2013 conditions were consistent with satellite as well as new ground-based lidar retrievals, while the ones for the 1985 conditions were outside the observational range.For other cloud quantities, including cloud fraction, liquid water path, cloud base altitude and cloud lifetime, the aerosol response was small compared to their natural variability. Also, large uncertainties in satellite and ground-based observations make the detection and attribution difficult for these quantities. An exception to this is the fact that at a large liquid water path value (LWP > 200 g m-²), the control simulation matches the observations, while the perturbed one shows an LWP which is too large.The model simulations allowed for quantifying the radiative forcing due to aerosol–cloud interactions, as well as the adjustments to this forcing. The latter were small compared to the variability and showed overall a small positive radiative effect. The overall effective radiative forcing (ERF) due to aerosol–cloud interactions (ERFaci) in the simulation was dominated thus by the Twomey effect and yielded for this day, region and aerosol perturbation −2.6 W m-². Using general circulation models to scale this to a global-mean present-day vs. pre-industrial ERFaci yields a global ERFaci of −0.8 W m-².
536 _ _ |a 511 - Computational Science and Mathematical Methods (POF3-511)
|0 G:(DE-HGF)POF3-511
|c POF3-511
|f POF III
|x 0
536 _ _ |a High-resolution simulations with the ICON large eddy model (jjsc31_20191101)
|0 G:(DE-Juel1)jjsc31_20191101
|c jjsc31_20191101
|f High-resolution simulations with the ICON large eddy model
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Sourdeval, Odran
|0 0000-0002-2822-5303
|b 1
700 1 _ |a Acquistapace, Claudia
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Baars, Holger
|0 0000-0002-2316-8960
|b 3
700 1 _ |a Carbajal Henken, Cintia
|0 0000-0002-3408-5925
|b 4
700 1 _ |a Genz, Christa
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Hesemann, Jonas
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Jimenez, Cristofer
|0 0000-0002-2776-0339
|b 7
700 1 _ |a König, Marcel
|0 0000-0002-0342-7611
|b 8
700 1 _ |a Kretzschmar, Jan
|0 0000-0002-8013-5831
|b 9
700 1 _ |a Madenach, Nils
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Meyer, Catrin I.
|0 P:(DE-Juel1)156465
|b 11
700 1 _ |a Schrödner, Roland
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Seifert, Patric
|0 0000-0002-5626-3761
|b 13
700 1 _ |a Senf, Fabian
|0 0000-0003-1685-2657
|b 14
700 1 _ |a Brueck, Matthias
|0 0000-0002-8830-8506
|b 15
700 1 _ |a Cioni, Guido
|0 P:(DE-HGF)0
|b 16
700 1 _ |a Engels, Jan Frederik
|0 P:(DE-HGF)0
|b 17
700 1 _ |a Fieg, Kerstin
|0 P:(DE-HGF)0
|b 18
700 1 _ |a Gorges, Ksenia
|0 P:(DE-HGF)0
|b 19
700 1 _ |a Heinze, Rieke
|0 P:(DE-HGF)0
|b 20
700 1 _ |a Siligam, Pavan Kumar
|0 P:(DE-HGF)0
|b 21
700 1 _ |a Burkhardt, Ulrike
|0 0000-0002-0742-7176
|b 22
700 1 _ |a Crewell, Susanne
|0 P:(DE-HGF)0
|b 23
700 1 _ |a Hoose, Corinna
|0 0000-0003-2827-5789
|b 24
700 1 _ |a Seifert, Axel
|0 0000-0001-9760-3550
|b 25
700 1 _ |a Tegen, Ina
|0 0000-0003-3700-3232
|b 26
700 1 _ |a Quaas, Johannes
|0 0000-0001-7057-194X
|b 27
773 _ _ |a 10.5194/acp-20-5657-2020
|g Vol. 20, no. 9, p. 5657 - 5678
|0 PERI:(DE-600)2069847-1
|n 9
|p 5657 - 5678
|t Atmospheric chemistry and physics
|v 20
|y 2020
|x 1680-7324
856 4 _ |u https://juser.fz-juelich.de/record/888753/files/acp-20-5657-2020.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:888753
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 0000-0002-3319-4513
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 1
|6 0000-0002-2822-5303
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 2
|6 P:(DE-HGF)0
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 3
|6 0000-0002-2316-8960
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 4
|6 0000-0002-3408-5925
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 5
|6 P:(DE-HGF)0
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 6
|6 P:(DE-HGF)0
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 7
|6 0000-0002-2776-0339
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 8
|6 0000-0002-0342-7611
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 9
|6 0000-0002-8013-5831
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 10
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)156465
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 12
|6 P:(DE-HGF)0
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 13
|6 0000-0002-5626-3761
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 14
|6 0000-0003-1685-2657
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 15
|6 0000-0002-8830-8506
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 16
|6 P:(DE-HGF)0
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 17
|6 P:(DE-HGF)0
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 18
|6 P:(DE-HGF)0
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 19
|6 P:(DE-HGF)0
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 20
|6 P:(DE-HGF)0
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 21
|6 P:(DE-HGF)0
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 22
|6 0000-0002-0742-7176
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 23
|6 P:(DE-HGF)0
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 24
|6 0000-0003-2827-5789
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 25
|6 0000-0001-9760-3550
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 26
|6 0000-0003-3700-3232
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 27
|6 0000-0001-7057-194X
913 1 _ |a DE-HGF
|b Key Technologies
|l Supercomputing & Big Data
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-500
|4 G:(DE-HGF)POF
|v Computational Science and Mathematical Methods
|x 0
913 2 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF4-890
|0 G:(DE-HGF)POF4-899
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-800
|4 G:(DE-HGF)POF
|v ohne Topic
|x 0
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-09-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-09-03
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ATMOS CHEM PHYS : 2018
|d 2020-09-03
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ATMOS CHEM PHYS : 2018
|d 2020-09-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2020-09-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2020-09-03
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-09-03
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2020-09-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-09-03
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Peer review
|d 2020-09-03
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2020-09-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-09-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-09-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-09-03
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21