000888756 001__ 888756
000888756 005__ 20240712100918.0
000888756 0247_ $$2doi$$a10.1029/2020GL090844
000888756 0247_ $$2ISSN$$a0094-8276
000888756 0247_ $$2ISSN$$a1944-8007
000888756 0247_ $$2Handle$$a2128/26527
000888756 0247_ $$2altmetric$$aaltmetric:95142410
000888756 0247_ $$2WOS$$aWOS:000603666000004
000888756 037__ $$aFZJ-2020-05185
000888756 082__ $$a550
000888756 1001_ $$00000-0002-1264-0756$$aBernhard, Germar H.$$b0$$eCorresponding author
000888756 245__ $$aRecord‐Breaking Increases in Arctic Solar Ultraviolet Radiation Caused by Exceptionally Large Ozone Depletion in 2020
000888756 260__ $$aHoboken, NJ$$bWiley$$c2020
000888756 3367_ $$2DRIVER$$aarticle
000888756 3367_ $$2DataCite$$aOutput Types/Journal article
000888756 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1607958520_18530
000888756 3367_ $$2BibTeX$$aARTICLE
000888756 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000888756 3367_ $$00$$2EndNote$$aJournal Article
000888756 520__ $$aMeasurements of solar ultraviolet radiation (UVR) performed between January and June 2020 at 10 Arctic and subarctic locations are compared with historical observations. Differences between 2020 and prior years are also assessed with total ozone column and UVR data from satellites. Erythemal (sunburning) UVR is quantified with the UV Index (UVI) derived from these measurements. UVI data show unprecedently large anomalies, occurring mostly between early March and mid‐April 2020. For several days, UVIs observed in 2020 exceeded measurements of previous years by up to 140%. Historical means were surpassed by more than six standard deviations at several locations in the Arctic. In northern Canada, the average UVI for March was about 75% larger than usual. UVIs in April 2020 were elevated on average by about 25% at all sites. However, absolute anomalies remained below 3.0 UVI units because the enhancements occurred during times when the solar elevation was still low.
000888756 536__ $$0G:(DE-HGF)POF3-244$$a244 - Composition and dynamics of the upper troposphere and middle atmosphere (POF3-244)$$cPOF3-244$$fPOF III$$x0
000888756 588__ $$aDataset connected to CrossRef
000888756 7001_ $$00000-0002-2731-5956$$aFioletov, Vitali E.$$b1
000888756 7001_ $$0P:(DE-Juel1)129122$$aGrooß, Jens‐Uwe$$b2
000888756 7001_ $$00000-0002-1125-0756$$aIalongo, Iolanda$$b3
000888756 7001_ $$00000-0001-5711-8198$$aJohnsen, Bjørn$$b4
000888756 7001_ $$00000-0003-2840-1132$$aLakkala, Kaisa$$b5
000888756 7001_ $$00000-0003-4489-4811$$aManney, Gloria L.$$b6
000888756 7001_ $$0P:(DE-Juel1)129138$$aMüller, Rolf$$b7
000888756 7001_ $$00000-0002-8981-0805$$aSvendby, Tove$$b8
000888756 770__ $$aThe Exceptional Arctic Polar Vortex in 2019/2020: Causes and Consequences
000888756 773__ $$0PERI:(DE-600)2021599-X$$a10.1029/2020GL090844$$gVol. 47, no. 24$$n24$$pe2020GL090844$$tGeophysical research letters$$v47$$x1944-8007$$y2020
000888756 8564_ $$uhttps://juser.fz-juelich.de/record/888756/files/2020GL090844.pdf$$yOpenAccess
000888756 909CO $$ooai:juser.fz-juelich.de:888756$$pdnbdelivery$$pVDB$$pVDB:Earth_Environment$$pdriver$$popen_access$$popenaire
000888756 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129122$$aForschungszentrum Jülich$$b2$$kFZJ
000888756 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129138$$aForschungszentrum Jülich$$b7$$kFZJ
000888756 9131_ $$0G:(DE-HGF)POF3-244$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vComposition and dynamics of the upper troposphere and middle atmosphere$$x0
000888756 9141_ $$y2020
000888756 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-04
000888756 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-04
000888756 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000888756 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-09-04
000888756 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-09-04
000888756 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2020-09-04$$wger
000888756 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-04
000888756 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-09-04
000888756 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000888756 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-09-04
000888756 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bGEOPHYS RES LETT : 2018$$d2020-09-04
000888756 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-04
000888756 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-04
000888756 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-04
000888756 920__ $$lyes
000888756 9201_ $$0I:(DE-Juel1)IEK-7-20101013$$kIEK-7$$lStratosphäre$$x0
000888756 9801_ $$aFullTexts
000888756 980__ $$ajournal
000888756 980__ $$aVDB
000888756 980__ $$aUNRESTRICTED
000888756 980__ $$aI:(DE-Juel1)IEK-7-20101013
000888756 981__ $$aI:(DE-Juel1)ICE-4-20101013