000888764 001__ 888764
000888764 005__ 20230310131355.0
000888764 0247_ $$2doi$$a10.1016/j.jmrt.2020.09.085
000888764 0247_ $$2ISSN$$a2214-0697
000888764 0247_ $$2ISSN$$a2238-7854
000888764 0247_ $$2Handle$$a2128/26534
000888764 0247_ $$2WOS$$aWOS:000606413800010
000888764 037__ $$aFZJ-2020-05193
000888764 082__ $$a670
000888764 1001_ $$00000-0003-0784-8525$$aAllam, Tarek$$b0
000888764 245__ $$aImpact of precipitates on the hydrogen embrittlement behavior of a V-alloyed medium-manganese austenitic stainless steel
000888764 260__ $$aRio de Janeiro$$bElsevier$$c2020
000888764 3367_ $$2DRIVER$$aarticle
000888764 3367_ $$2DataCite$$aOutput Types/Journal article
000888764 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1607967318_30277
000888764 3367_ $$2BibTeX$$aARTICLE
000888764 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000888764 3367_ $$00$$2EndNote$$aJournal Article
000888764 520__ $$aThis paper discusses the avoidance of hydrogen embrittlement (HE) in a medium manganese stainless steel X20CrNiMnVN18-5-10. We adopted a HE-mitigation strategy that relies on improving its intrinsic resistance to hydrogen by adjusting an ultrafine microstructure (∼1.3 µm) containing a significant amount of nano-sized V- and Cr-based precipitates in the size range of 20 - ≥200 nm. The precipitation state was characterized using a high-resolution scanning transmission electron microscope. Slow strain rate tests at a strain rate of 10−6 s−1 were conducted on specimens with/without hydrogen pre-charging to evaluate the HE susceptibility. Thermal desorption analysis was applied to explore the hydrogen trapping behavior in cold-rolled, annealed and hydrogen pre-charged states. Hydrogen uptake and hydrogen desorption behaviors show a dependence on the size of precipitates. It is remarked that the large precipitates trap a larger amount of hydrogen and show a higher temperature desorption peak than the small precipitates do. The high-temperature hydrogen desorption peaks (>400 °C) indicate that the observed nano-sized precipitates provide irreversible trapping sites, where hydrogen uptake occurs. The investigated steel X20CrNiMnVN18-5-10 demonstrates an enhanced intrinsic resistance to HE in comparison to medium and high manganese as well as stainless steels. The findings suggest that microstructure engineering with sufficient number of hydrogen traps in an ultrafine-grained microstructure is an appropriate HE mitigation strategy that allows designing hydrogen-resistant advanced high strength steels.
000888764 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x0
000888764 536__ $$0G:(DE-82)ZUK2-TvK$$aERS TvK (ZUK2) - Theodore von Kármán Fellowships (ZUK2-TvK)$$cZUK2-TvK$$x1
000888764 536__ $$0G:(GEPRIS)29898171$$aDFG project 29898171 - SFB 761: Stahl - ab initio. Quantenmechanisch geführtes Design neuer Eisenbasis-Werkstoffe (29898171)$$c29898171$$x2
000888764 588__ $$aDataset connected to CrossRef
000888764 7001_ $$00000-0002-1257-8892$$aGuo, Xiaofei$$b1
000888764 7001_ $$0P:(DE-Juel1)161504$$aLipińska-Chwałek, Marta$$b2
000888764 7001_ $$0P:(DE-HGF)0$$aHamada, Atef$$b3$$eCorresponding author
000888764 7001_ $$0P:(DE-HGF)0$$aAhmed, Essam$$b4
000888764 7001_ $$0P:(DE-HGF)0$$aBleck, Wolfgang$$b5
000888764 773__ $$0PERI:(DE-600)2732709-7$$a10.1016/j.jmrt.2020.09.085$$gVol. 9, no. 6, p. 13524 - 13538$$n6$$p13524 - 13538$$tJournal of materials research and technology$$v9$$x2238-7854$$y2020
000888764 8564_ $$uhttps://juser.fz-juelich.de/record/888764/files/1-s2.0-S2238785420318093-main.pdf$$yOpenAccess
000888764 909CO $$ooai:juser.fz-juelich.de:888764$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000888764 9101_ $$0I:(DE-HGF)0$$60000-0003-0784-8525$$aExternal Institute$$b0$$kExtern
000888764 9101_ $$0I:(DE-588b)5008462-8$$60000-0002-1257-8892$$aForschungszentrum Jülich$$b1$$kFZJ
000888764 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161504$$aForschungszentrum Jülich$$b2$$kFZJ
000888764 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000888764 9141_ $$y2020
000888764 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-09
000888764 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-09-09
000888764 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000888764 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ MATER RES TECHNOL : 2018$$d2020-09-09
000888764 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-09-09
000888764 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-09-09
000888764 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-09
000888764 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-09
000888764 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-09-09
000888764 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000888764 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2020-09-09
000888764 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-09-09
000888764 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-09
000888764 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-09
000888764 920__ $$lyes
000888764 9201_ $$0I:(DE-Juel1)ER-C-2-20170209$$kER-C-2$$lMaterialwissenschaft u. Werkstofftechnik$$x0
000888764 980__ $$ajournal
000888764 980__ $$aVDB
000888764 980__ $$aUNRESTRICTED
000888764 980__ $$aI:(DE-Juel1)ER-C-2-20170209
000888764 9801_ $$aFullTexts