000888776 001__ 888776
000888776 005__ 20240610120127.0
000888776 0247_ $$2doi$$a10.1088/1742-5468/ab7a1d
000888776 0247_ $$2altmetric$$aaltmetric:90420300
000888776 0247_ $$2WOS$$aWOS:000528636100001
000888776 037__ $$aFZJ-2020-05205
000888776 082__ $$a530
000888776 1001_ $$0P:(DE-Juel1)130966$$aSchütz, Gunter M.$$b0$$eCorresponding author
000888776 245__ $$aOn the stationary frequency of programmed ribosomal −1 frameshift
000888776 260__ $$aBristol$$bIOP Publ.$$c2020
000888776 3367_ $$2DRIVER$$aarticle
000888776 3367_ $$2DataCite$$aOutput Types/Journal article
000888776 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1608108969_19770
000888776 3367_ $$2BibTeX$$aARTICLE
000888776 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000888776 3367_ $$00$$2EndNote$$aJournal Article
000888776 500__ $$aKein Post-print vorhanden!
000888776 520__ $$aWe present a stochastic model for programmed ribosomal −1 frameshift, triggered by a slippery sequence and a following pseudoknot on the mRNA template, that allows for the exact derivation of the stationary distribution of ribosome positions and for exact analytical calculations of the stationary rate of frameshift, its efficiency and other quantities of interest. We also present the stationary phase diagram as a function of the initiation rate and the density ribosomes that the pseudoknot can support. These observations provide mathematically rigorous evidence for the notion that the density of molecular motors is an important control parameter for the elongation rate in the presence of slippery sequences both in transcription of RNA and translation of proteins.
000888776 536__ $$0G:(DE-HGF)POF3-553$$a553 - Physical Basis of Diseases (POF3-553)$$cPOF3-553$$fPOF III$$x0
000888776 588__ $$aDataset connected to CrossRef
000888776 773__ $$0PERI:(DE-600)2138944-5$$a10.1088/1742-5468/ab7a1d$$gVol. 2020, no. 4, p. 043502 -$$n4$$p043502$$tJournal of statistical mechanics: theory and experiment$$v2020$$x1742-5468$$y2020
000888776 8564_ $$uhttps://juser.fz-juelich.de/record/888776/files/Sch%C3%BCtz_2020_J._Stat._Mech._2020_043502.pdf$$yRestricted
000888776 909CO $$ooai:juser.fz-juelich.de:888776$$pVDB
000888776 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130966$$aForschungszentrum Jülich$$b0$$kFZJ
000888776 9131_ $$0G:(DE-HGF)POF3-553$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vPhysical Basis of Diseases$$x0
000888776 9141_ $$y2020
000888776 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-09-05$$wger
000888776 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ STAT MECH-THEORY E : 2018$$d2020-09-05
000888776 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-05
000888776 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-05
000888776 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-05
000888776 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-05
000888776 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-09-05
000888776 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-05
000888776 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-05
000888776 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-09-05
000888776 9201_ $$0I:(DE-Juel1)IBI-5-20200312$$kIBI-5$$lTheoretische Physik der Lebenden Materie$$x0
000888776 980__ $$ajournal
000888776 980__ $$aVDB
000888776 980__ $$aI:(DE-Juel1)IBI-5-20200312
000888776 980__ $$aUNRESTRICTED
000888776 981__ $$aI:(DE-Juel1)IAS-2-20090406