001     888776
005     20240610120127.0
024 7 _ |a 10.1088/1742-5468/ab7a1d
|2 doi
024 7 _ |a altmetric:90420300
|2 altmetric
024 7 _ |a WOS:000528636100001
|2 WOS
037 _ _ |a FZJ-2020-05205
082 _ _ |a 530
100 1 _ |a Schütz, Gunter M.
|0 P:(DE-Juel1)130966
|b 0
|e Corresponding author
245 _ _ |a On the stationary frequency of programmed ribosomal −1 frameshift
260 _ _ |a Bristol
|c 2020
|b IOP Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1608108969_19770
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a Kein Post-print vorhanden!
520 _ _ |a We present a stochastic model for programmed ribosomal −1 frameshift, triggered by a slippery sequence and a following pseudoknot on the mRNA template, that allows for the exact derivation of the stationary distribution of ribosome positions and for exact analytical calculations of the stationary rate of frameshift, its efficiency and other quantities of interest. We also present the stationary phase diagram as a function of the initiation rate and the density ribosomes that the pseudoknot can support. These observations provide mathematically rigorous evidence for the notion that the density of molecular motors is an important control parameter for the elongation rate in the presence of slippery sequences both in transcription of RNA and translation of proteins.
536 _ _ |a 553 - Physical Basis of Diseases (POF3-553)
|0 G:(DE-HGF)POF3-553
|c POF3-553
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
773 _ _ |a 10.1088/1742-5468/ab7a1d
|g Vol. 2020, no. 4, p. 043502 -
|0 PERI:(DE-600)2138944-5
|n 4
|p 043502
|t Journal of statistical mechanics: theory and experiment
|v 2020
|y 2020
|x 1742-5468
856 4 _ |u https://juser.fz-juelich.de/record/888776/files/Sch%C3%BCtz_2020_J._Stat._Mech._2020_043502.pdf
|y Restricted
909 C O |o oai:juser.fz-juelich.de:888776
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)130966
913 1 _ |a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-553
|2 G:(DE-HGF)POF3-500
|v Physical Basis of Diseases
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2020
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2020-09-05
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J STAT MECH-THEORY E : 2018
|d 2020-09-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-09-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-09-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-09-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-09-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-09-05
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-09-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-09-05
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-09-05
920 1 _ |0 I:(DE-Juel1)IBI-5-20200312
|k IBI-5
|l Theoretische Physik der Lebenden Materie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBI-5-20200312
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IAS-2-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21