Hauptseite > Publikationsdatenbank > On the stationary frequency of programmed ribosomal −1 frameshift > print |
001 | 888776 | ||
005 | 20240610120127.0 | ||
024 | 7 | _ | |a 10.1088/1742-5468/ab7a1d |2 doi |
024 | 7 | _ | |a altmetric:90420300 |2 altmetric |
024 | 7 | _ | |a WOS:000528636100001 |2 WOS |
037 | _ | _ | |a FZJ-2020-05205 |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a Schütz, Gunter M. |0 P:(DE-Juel1)130966 |b 0 |e Corresponding author |
245 | _ | _ | |a On the stationary frequency of programmed ribosomal −1 frameshift |
260 | _ | _ | |a Bristol |c 2020 |b IOP Publ. |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1608108969_19770 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
500 | _ | _ | |a Kein Post-print vorhanden! |
520 | _ | _ | |a We present a stochastic model for programmed ribosomal −1 frameshift, triggered by a slippery sequence and a following pseudoknot on the mRNA template, that allows for the exact derivation of the stationary distribution of ribosome positions and for exact analytical calculations of the stationary rate of frameshift, its efficiency and other quantities of interest. We also present the stationary phase diagram as a function of the initiation rate and the density ribosomes that the pseudoknot can support. These observations provide mathematically rigorous evidence for the notion that the density of molecular motors is an important control parameter for the elongation rate in the presence of slippery sequences both in transcription of RNA and translation of proteins. |
536 | _ | _ | |a 553 - Physical Basis of Diseases (POF3-553) |0 G:(DE-HGF)POF3-553 |c POF3-553 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef |
773 | _ | _ | |a 10.1088/1742-5468/ab7a1d |g Vol. 2020, no. 4, p. 043502 - |0 PERI:(DE-600)2138944-5 |n 4 |p 043502 |t Journal of statistical mechanics: theory and experiment |v 2020 |y 2020 |x 1742-5468 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/888776/files/Sch%C3%BCtz_2020_J._Stat._Mech._2020_043502.pdf |y Restricted |
909 | C | O | |o oai:juser.fz-juelich.de:888776 |p VDB |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)130966 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences |1 G:(DE-HGF)POF3-550 |0 G:(DE-HGF)POF3-553 |2 G:(DE-HGF)POF3-500 |v Physical Basis of Diseases |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
914 | 1 | _ | |y 2020 |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2020-09-05 |w ger |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b J STAT MECH-THEORY E : 2018 |d 2020-09-05 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2020-09-05 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2020-09-05 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2020-09-05 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2020-09-05 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2020-09-05 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2020-09-05 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2020-09-05 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2020-09-05 |
920 | 1 | _ | |0 I:(DE-Juel1)IBI-5-20200312 |k IBI-5 |l Theoretische Physik der Lebenden Materie |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)IBI-5-20200312 |
980 | _ | _ | |a UNRESTRICTED |
981 | _ | _ | |a I:(DE-Juel1)IAS-2-20090406 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|