001     888779
005     20250701125923.0
024 7 _ |a 10.1109/NSS/MIC42101.2019.9059949
|2 doi
024 7 _ |a WOS:000569982800341
|2 WOS
037 _ _ |a FZJ-2020-05208
041 _ _ |a English
100 1 _ |a Talalwa, Lotfi
|0 P:(DE-Juel1)176218
|b 0
|u fzj
111 2 _ |a 2019 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC)
|g IEEE
|c Manchester
|d 2019-10-26 - 2019-11-02
|w United Kingdom
245 _ _ |a Evaluation of 3D printable rubber-elastomeric polymer as phantom material for Hybrid PET/MRI
260 _ _ |c 2019
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a Other
|2 DataCite
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a LECTURE_SPEECH
|2 ORCID
336 7 _ |a Conference Presentation
|b conf
|m conf
|0 PUB:(DE-HGF)6
|s 1650372413_11402
|2 PUB:(DE-HGF)
|x Outreach
502 _ _ |c RWTH Aachen
520 _ _ |a In this study, a new series of 3D printable filaments called PORO-LAY have been investigated on behalf of their suitability to serve as material for the development of novel phantoms for hybrid PET/MRI. PORO-LAY filaments have been previously used in biofuel cell development, particle filtration and for modeling elastic tissues. We tested porosity, electrical permittivity, electrical conductivity, and absorptive capacity of the material as well as resulting image contrast and image homogeneity when undergoing PET and MRI scanning. The results of this study demonstrate that these filaments with their unique properties may be good candidates for the construction of phantoms (e.g. for mimicking brain tissues) for hybrid PET/MRI using a low cost 3D printing layer by layer additive manufacturing method. Such novel multimodal phantoms could potentially be used as new standard for development and evaluation of PET/MRI methods (e.g. regarding attenuation and motion correction, image reconstruction and general image quality assessment).
536 _ _ |a 573 - Neuroimaging (POF3-573)
|0 G:(DE-HGF)POF3-573
|c POF3-573
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef Conference
700 1 _ |a Natour, Ghaleb
|0 P:(DE-Juel1)142196
|b 1
|u fzj
700 1 _ |a Gordjinejad, Ali
|0 P:(DE-Juel1)145832
|b 2
|u fzj
700 1 _ |a Bauer, Andreas
|0 P:(DE-Juel1)131672
|b 3
|u fzj
700 1 _ |a Drzezga, Alexander
|0 P:(DE-Juel1)177611
|b 4
|u fzj
700 1 _ |a Beer, Simone
|0 P:(DE-Juel1)133864
|b 5
|e Corresponding author
|u fzj
773 _ _ |a 10.1109/NSS/MIC42101.2019.9059949
856 4 _ |u https://juser.fz-juelich.de/record/888779/files/Talalwa%20et%20al_2019.pdf
|y Restricted
909 C O |o oai:juser.fz-juelich.de:888779
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)176218
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 0
|6 P:(DE-Juel1)176218
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)142196
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 1
|6 P:(DE-Juel1)142196
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)145832
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)131672
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)177611
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)133864
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-573
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-500
|4 G:(DE-HGF)POF
|v Neuroimaging
|x 0
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ZEA-1-20090406
|k ZEA-1
|l Zentralinstitut für Technologie
|x 0
920 1 _ |0 I:(DE-Juel1)INM-2-20090406
|k INM-2
|l Molekulare Organisation des Gehirns
|x 1
980 _ _ |a conf
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)ZEA-1-20090406
980 _ _ |a I:(DE-Juel1)INM-2-20090406
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)ITE-20250108


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21