001     888780
005     20240712112912.0
024 7 _ |a 10.1021/acs.iecr.0c01775
|2 doi
024 7 _ |a 0019-7866
|2 ISSN
024 7 _ |a 0095-9014
|2 ISSN
024 7 _ |a 0888-5885
|2 ISSN
024 7 _ |a 1520-5045
|2 ISSN
024 7 _ |a 1541-5724
|2 ISSN
024 7 _ |a 1943-2968
|2 ISSN
024 7 _ |a 2128/26535
|2 Handle
024 7 _ |a WOS:000547326800028
|2 WOS
037 _ _ |a FZJ-2020-05209
082 _ _ |a 660
100 1 _ |a Brée, Luisa C.
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Techno-Economic Comparison of Flexibility Options in Chlorine Production
260 _ _ |a Washington, DC
|c 2020
|b Soc.75198
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1607968674_18333
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In order to allow demand side management in the chlorine industry, we suggest seven modifications to the conventional chlor-alkali process. The modifications include the oversizing of electrolyzer cells, replacement of electrodes, and integration with flexible auxiliary units. We optimize the operation of the processes for four scenarios with different electricity price profiles and hydrogen prices. We then rank the processes in a merit order of three economic metrics including investment costs, operating costs, and payout time. While reasonable payout times are achieved with many of the flexible processes, the best option with the shortest payout time highly depends on the prices of hydrogen and electricity. The results indicate that flexible chlor-alkali processes without auxiliary units outperform steady-state chlor-alkali processes with flexible auxiliary units. In particular, the combination of two electrodes or the implementation of a bifunctional electrode for operational mode switching seems to be the best compromise.
536 _ _ |a 899 - ohne Topic (POF3-899)
|0 G:(DE-HGF)POF3-899
|c POF3-899
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Bulan, Andreas
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Herding, Robert
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Kuhlmann, Jonas
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Mitsos, Alexander
|0 P:(DE-Juel1)172025
|b 4
700 1 _ |a Perrey, Karen
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Roh, Kosan
|0 P:(DE-HGF)0
|b 6
|e Corresponding author
773 _ _ |a 10.1021/acs.iecr.0c01775
|g Vol. 59, no. 26, p. 12186 - 12196
|0 PERI:(DE-600)2103816-8
|n 26
|p 12186 - 12196
|t Industrial & engineering chemistry
|v 59
|y 2020
|x 1520-5045
856 4 _ |u https://juser.fz-juelich.de/record/888780/files/acs.iecr.0c01775.pdf
|y Restricted
856 4 _ |y Published on 2020-05-29. Available in OpenAccess from 2021-05-29.
|u https://juser.fz-juelich.de/record/888780/files/Bree_2020_TechnoEconomic.pdf
909 C O |o oai:juser.fz-juelich.de:888780
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 0
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 2
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 3
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)172025
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 4
|6 P:(DE-Juel1)172025
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 6
|6 P:(DE-HGF)0
913 1 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF3-890
|0 G:(DE-HGF)POF3-899
|2 G:(DE-HGF)POF3-800
|v ohne Topic
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-08-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-08-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2020-08-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-08-31
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1200
|2 StatID
|b Chemical Reactions
|d 2020-08-31
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-08-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-08-31
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-08-31
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-08-31
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b IND ENG CHEM RES : 2018
|d 2020-08-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-08-31
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2020-08-31
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-08-31
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-10-20170217
|k IEK-10
|l Modellierung von Energiesystemen
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-10-20170217
981 _ _ |a I:(DE-Juel1)ICE-1-20170217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21