000888781 001__ 888781
000888781 005__ 20240712112912.0
000888781 0247_ $$2doi$$a10.1002/aic.16986
000888781 0247_ $$2ISSN$$a0001-1541
000888781 0247_ $$2ISSN$$a1547-5905
000888781 0247_ $$2Handle$$a2128/26515
000888781 0247_ $$2altmetric$$aaltmetric:89855932
000888781 0247_ $$2WOS$$aWOS:000563864100001
000888781 037__ $$aFZJ-2020-05210
000888781 082__ $$a660
000888781 1001_ $$0P:(DE-HGF)0$$aSchäfer, Pascal$$b0
000888781 245__ $$aNonlinear scheduling with time‐variable electricity prices using sensitivity‐based truncations of wavelet transforms
000888781 260__ $$aHoboken, NJ$$bWiley$$c2020
000888781 3367_ $$2DRIVER$$aarticle
000888781 3367_ $$2DataCite$$aOutput Types/Journal article
000888781 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1607939261_17288
000888781 3367_ $$2BibTeX$$aARTICLE
000888781 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000888781 3367_ $$00$$2EndNote$$aJournal Article
000888781 520__ $$aWe propose an algorithm for scheduling subject to time‐variable electricity prices using nonlinear process models that enables long planning horizons with fine discretizations. The algorithm relies on a reduced‐space formulation and enhances our previous work (Schäfer et al., Comput Chem Eng, 2020;132:106598) by a sensitivity‐based refinement procedure. We therein expose the coefficients of the wavelet transform of the time series of independent process variables to the optimizer. The problem size is reduced by truncating the transform and iteratively adjusted using Lagrangian multipliers. We apply the algorithm to the scheduling of a multi‐product air separation unit. The nonlinear power consumption characteristic is replaced by an artificial neural network trained on data from a rigorous model. We demonstrate that the proposed algorithm reduces the number of optimization variables by more than one order of magnitude, whilst furnishing feasible schedules with insignificant losses in objective values compared to solutions considering the full dimensionality.
000888781 536__ $$0G:(DE-HGF)POF3-899$$a899 - ohne Topic (POF3-899)$$cPOF3-899$$fPOF III$$x0
000888781 588__ $$aDataset connected to CrossRef
000888781 7001_ $$0P:(DE-HGF)0$$aSchweidtmann, Artur M.$$b1
000888781 7001_ $$0P:(DE-Juel1)172025$$aMitsos, Alexander$$b2$$eCorresponding author$$ufzj
000888781 773__ $$0PERI:(DE-600)2020333-0$$a10.1002/aic.16986$$gVol. 66, no. 10$$n10$$pe16986$$tAIChE journal$$v66$$x1547-5905$$y2020
000888781 8564_ $$uhttps://juser.fz-juelich.de/record/888781/files/aic.16986.pdf$$yOpenAccess
000888781 8564_ $$uhttps://juser.fz-juelich.de/record/888781/files/pasc_AIChEJ2020_SensBasedRefine.pdf$$yOpenAccess
000888781 909CO $$ooai:juser.fz-juelich.de:888781$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000888781 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b0$$kRWTH
000888781 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b1$$kRWTH
000888781 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172025$$aForschungszentrum Jülich$$b2$$kFZJ
000888781 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)172025$$aRWTH Aachen$$b2$$kRWTH
000888781 9131_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000888781 9141_ $$y2020
000888781 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-08-29
000888781 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-08-29
000888781 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-08-29
000888781 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000888781 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bAICHE J : 2018$$d2020-08-29
000888781 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2020-08-29$$wger
000888781 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-08-29
000888781 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-08-29
000888781 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-08-29
000888781 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000888781 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-08-29
000888781 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-08-29$$wger
000888781 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-08-29
000888781 920__ $$lyes
000888781 9201_ $$0I:(DE-Juel1)IEK-10-20170217$$kIEK-10$$lModellierung von Energiesystemen$$x0
000888781 9801_ $$aFullTexts
000888781 980__ $$ajournal
000888781 980__ $$aVDB
000888781 980__ $$aUNRESTRICTED
000888781 980__ $$aI:(DE-Juel1)IEK-10-20170217
000888781 981__ $$aI:(DE-Juel1)ICE-1-20170217