001     888781
005     20240712112912.0
024 7 _ |a 10.1002/aic.16986
|2 doi
024 7 _ |a 0001-1541
|2 ISSN
024 7 _ |a 1547-5905
|2 ISSN
024 7 _ |a 2128/26515
|2 Handle
024 7 _ |a altmetric:89855932
|2 altmetric
024 7 _ |a WOS:000563864100001
|2 WOS
037 _ _ |a FZJ-2020-05210
082 _ _ |a 660
100 1 _ |a Schäfer, Pascal
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Nonlinear scheduling with time‐variable electricity prices using sensitivity‐based truncations of wavelet transforms
260 _ _ |a Hoboken, NJ
|c 2020
|b Wiley
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1607939261_17288
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We propose an algorithm for scheduling subject to time‐variable electricity prices using nonlinear process models that enables long planning horizons with fine discretizations. The algorithm relies on a reduced‐space formulation and enhances our previous work (Schäfer et al., Comput Chem Eng, 2020;132:106598) by a sensitivity‐based refinement procedure. We therein expose the coefficients of the wavelet transform of the time series of independent process variables to the optimizer. The problem size is reduced by truncating the transform and iteratively adjusted using Lagrangian multipliers. We apply the algorithm to the scheduling of a multi‐product air separation unit. The nonlinear power consumption characteristic is replaced by an artificial neural network trained on data from a rigorous model. We demonstrate that the proposed algorithm reduces the number of optimization variables by more than one order of magnitude, whilst furnishing feasible schedules with insignificant losses in objective values compared to solutions considering the full dimensionality.
536 _ _ |a 899 - ohne Topic (POF3-899)
|0 G:(DE-HGF)POF3-899
|c POF3-899
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Schweidtmann, Artur M.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Mitsos, Alexander
|0 P:(DE-Juel1)172025
|b 2
|e Corresponding author
|u fzj
773 _ _ |a 10.1002/aic.16986
|g Vol. 66, no. 10
|0 PERI:(DE-600)2020333-0
|n 10
|p e16986
|t AIChE journal
|v 66
|y 2020
|x 1547-5905
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/888781/files/aic.16986.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/888781/files/pasc_AIChEJ2020_SensBasedRefine.pdf
909 C O |o oai:juser.fz-juelich.de:888781
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 0
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 1
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)172025
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 2
|6 P:(DE-Juel1)172025
913 1 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF3-890
|0 G:(DE-HGF)POF3-899
|2 G:(DE-HGF)POF3-800
|v ohne Topic
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2020-08-29
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b AICHE J : 2018
|d 2020-08-29
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2020-08-29
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-08-29
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-08-29
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-08-29
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2020-08-29
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-08-29
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-10-20170217
|k IEK-10
|l Modellierung von Energiesystemen
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-10-20170217
981 _ _ |a I:(DE-Juel1)ICE-1-20170217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21