Home > Publications database > Nonlinear scheduling with time‐variable electricity prices using sensitivity‐based truncations of wavelet transforms > print |
001 | 888781 | ||
005 | 20240712112912.0 | ||
024 | 7 | _ | |a 10.1002/aic.16986 |2 doi |
024 | 7 | _ | |a 0001-1541 |2 ISSN |
024 | 7 | _ | |a 1547-5905 |2 ISSN |
024 | 7 | _ | |a 2128/26515 |2 Handle |
024 | 7 | _ | |a altmetric:89855932 |2 altmetric |
024 | 7 | _ | |a WOS:000563864100001 |2 WOS |
037 | _ | _ | |a FZJ-2020-05210 |
082 | _ | _ | |a 660 |
100 | 1 | _ | |a Schäfer, Pascal |0 P:(DE-HGF)0 |b 0 |
245 | _ | _ | |a Nonlinear scheduling with time‐variable electricity prices using sensitivity‐based truncations of wavelet transforms |
260 | _ | _ | |a Hoboken, NJ |c 2020 |b Wiley |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1607939261_17288 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a We propose an algorithm for scheduling subject to time‐variable electricity prices using nonlinear process models that enables long planning horizons with fine discretizations. The algorithm relies on a reduced‐space formulation and enhances our previous work (Schäfer et al., Comput Chem Eng, 2020;132:106598) by a sensitivity‐based refinement procedure. We therein expose the coefficients of the wavelet transform of the time series of independent process variables to the optimizer. The problem size is reduced by truncating the transform and iteratively adjusted using Lagrangian multipliers. We apply the algorithm to the scheduling of a multi‐product air separation unit. The nonlinear power consumption characteristic is replaced by an artificial neural network trained on data from a rigorous model. We demonstrate that the proposed algorithm reduces the number of optimization variables by more than one order of magnitude, whilst furnishing feasible schedules with insignificant losses in objective values compared to solutions considering the full dimensionality. |
536 | _ | _ | |a 899 - ohne Topic (POF3-899) |0 G:(DE-HGF)POF3-899 |c POF3-899 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Schweidtmann, Artur M. |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Mitsos, Alexander |0 P:(DE-Juel1)172025 |b 2 |e Corresponding author |u fzj |
773 | _ | _ | |a 10.1002/aic.16986 |g Vol. 66, no. 10 |0 PERI:(DE-600)2020333-0 |n 10 |p e16986 |t AIChE journal |v 66 |y 2020 |x 1547-5905 |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/888781/files/aic.16986.pdf |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/888781/files/pasc_AIChEJ2020_SensBasedRefine.pdf |
909 | C | O | |o oai:juser.fz-juelich.de:888781 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 0 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 1 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)172025 |
910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 2 |6 P:(DE-Juel1)172025 |
913 | 1 | _ | |a DE-HGF |b Programmungebundene Forschung |l ohne Programm |1 G:(DE-HGF)POF3-890 |0 G:(DE-HGF)POF3-899 |2 G:(DE-HGF)POF3-800 |v ohne Topic |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
914 | 1 | _ | |y 2020 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2020-08-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2020-08-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2020-08-29 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b AICHE J : 2018 |d 2020-08-29 |
915 | _ | _ | |a DEAL Wiley |0 StatID:(DE-HGF)3001 |2 StatID |d 2020-08-29 |w ger |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2020-08-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2020-08-29 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2020-08-29 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2020-08-29 |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2020-08-29 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2020-08-29 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-10-20170217 |k IEK-10 |l Modellierung von Energiesystemen |x 0 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IEK-10-20170217 |
981 | _ | _ | |a I:(DE-Juel1)ICE-1-20170217 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|