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Abstract

We propose an algorithm for scheduling subject to time-variable electricity prices

using nonlinear process models that enables long planning horizons with fine dis-

cretizations. The algorithm relies on a reduced-space formulation and enhances our

previous work (Schäfer et al., Comput Chem Eng, 2020;132:106598) by a sensitivity-

based refinement procedure. We therein expose the coefficients of the wavelet

transform of the time series of independent process variables to the optimizer. The

problem size is reduced by truncating the transform and iteratively adjusted using

Lagrangian multipliers. We apply the algorithm to the scheduling of a multi-product

air separation unit. The nonlinear power consumption characteristic is replaced by an

artificial neural network trained on data from a rigorous model. We demonstrate that

the proposed algorithm reduces the number of optimization variables by more than

one order of magnitude, whilst furnishing feasible schedules with insignificant losses

in objective values compared to solutions considering the full dimensionality.
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1 | INTRODUCTION

Exploiting time-variable electricity prices induced by an increasing

penetration of volatile renewable electricity sources by demand side

management (DSM) is nowadays recognized as an important measure

to ensure profitability of large industrial consumers.1 For this purpose,

scheduling formulations using discrete-time representations have largely

become the method of choice.2 Here, the overwhelming majority of

approaches relies on (mixed-integer) linear programming ([MI]LP) formu-

lations that can be treated efficiently by state-of-the-art solvers.3-7

In contrast, many real processes are characterized by strongly

nonlinear characteristics. Thus, authors proposed piecewise lineariza-

tion approaches for capturing the nonlinearities by introducing logical

disjunctions represented by binary variables, still leading to MILP for-

mulations.8,9 At the same time, potentials from using more

sophisticated surrogate models for representing highly nonlinear rela-

tions in chemical engineering10,11 are increasingly recognized. Conse-

quently, the utilization of such mostly nonlinear surrogate models to

accurately capture the (nonlinear) process characteristics when mak-

ing scheduling decisions seems promising. However, only few authors

tried a direct consideration of nonlinear process models in discrete-

time scheduling so far, as this leads to (mixed-integer) nonlinear pro-

grams ([MI]NLPs) with potentially multiple suboptimal local optima.

Consequently, solution of these scheduling problems either needs to

be addressed by confining to local searches12,13 that involve the risk

for suboptimal choices or requires global solution approaches.14 In the

desired latter case, relevant planning horizon lengths with adequate

temporal discretizations however lead to large-scale nonlinear optimi-

zation problems that are currently prohibitive for deterministic global

solution methods.
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In order to reduce the dimensionality when focusing on long hori-

zons, time series aggregation has become a widely applied approach

in energy systems engineering (cf. the overview given by Teichgraeber

and Brandt15 and the references therein). Essentially, these

approaches represent an entire horizon comprising a large number of

intervals by only few characteristic intervals, for example, to consider

operational decisions during the design optimization of energy sys-

tems.16-18 However, as classic time series aggregation does not con-

sider the chronology of intervals, its application to systems with time-

coupling constraints, such as storage or ramping limits, is problematic.

In order to overcome this restriction, recent literature proposes an

aggregation method relying on the identification of characteristic

periods, in which the chronology is preserved,19 finally enabling the

consideration of long-term storage in design decisions.20

As an alternative, there are approaches that allow for a low

dimensionality of the optimization problem, while explicitly consider-

ing all intervals of the original time series and thus guaranteeing con-

straint satisfaction for all intervals. These approaches make use of a

re-assignment of degrees of freedom (DoFs), leading to tailored time

grids. More precisely, the dimensionality of the optimization problem

is reduced by assigning one DoF to multiple intervals. For instance,

both Pineda and Morales21 as well as Palys and Daoutidis22 propose

to cluster similar consecutive intervals. Likewise, our recent work pre-

sents an approach to assign one DoF to multiple similar intervals that

do not necessarily need to be consecutive.23 Considering the applica-

tion to scheduling problems subject to time-variable electricity prices,

we map one DoF to multiple intervals with similar price data, which

allows for exploiting repeating price patterns in the course of the

planning horizon. Moreover, we apply a wavelet-based adaptation

procedure that is largely based on the work of Schlegel et al. con-

cerning suitable control vector parameterizations in dynamic

optimization,24 to iteratively refine the temporal discretization and

hence the number of DoFs. Our results indicate that one can thereby

identify feasible near-optimal solution points using only a small frac-

tion of DoFs.23 This makes the algorithm highly advantageous when

using reduced-space formulations from previous works addressing

both global dynamic25 and flowsheet optimization.26 In particular,

our recent results demonstrate that the reduction in the number of

DoFs, that is, optimization variables, through the grid-adaptation

thereby translates into substantial savings in computational times

compared to solution approaches considering the full temporal

dimensionality.23

Despite the successful demonstration that near-optimal solutions

can be furnished with only few DoFs actually used, the following

issues remain:

1. The refinement procedure needs several restrictions limiting the

possibilities for inserting additional grid points in one iteration in

order to guarantee that the derivation of the assignment of DoFs

to intervals is unambiguous.

2. Furthermore, the algorithm makes use of a systematic yet heuristic

procedure for introducing additional DoFs. Consequently, there is

no quantitative measure for the expected improvement in the

objective value through the refinement step providing a sound

basis for decision-making.

3. As a consequence of points (1) and (2), the algorithm's perfor-

mance can be poor in cases where the optimal schedule is strongly

governed by ramping constraints, that is, too many iterations are

required to identify promising schedules that involve the introduc-

tion of actually negligible DoFs and thus unnecessarily prolong

computational times.

Therefore, we herein present a further development of the algo-

rithm resolving issues (1)–(3) in case of scheduling problems compris-

ing only continuous DoFs. For this purpose, we perform optimizations

directly in the space of coefficients of the wavelet transform of the

time series of DoFs instead of the space of permuted DoFs, making

the explicit derivation of a temporal discretization superfluous (issue

(1)). Thereby, dimensionality reductions do no longer correspond to

assigning one DoF to multiple intervals but rather turn into a trunca-

tion of the wavelet transform by setting wavelet coefficients of

unused wavelet basis functions to zero, as is widely done in image

compression.27 This procedure allows for calculating the marginal

effect of relaxing the constraints truncating the wavelet transform,

that is, the Lagrangian multipliers. Hence, it provides the desired

quantitative measure for the improvements in the objective value

from introducing additional optimization variables and enables deci-

sions based on sensitivity information instead of pure heuristics (issue

(2)). Using this for iterative refinement steps finally allows for deter-

mining the most important characteristics of the solution and over-

comes issue (3). We remark that the proposed refinement strategy

using Lagrangian multipliers shows conceptual similarities with

approaches for column generation that have recently also gained

attention in the context of long-term operational decisions28-30; these

approaches rely on initially exposing only a restricted number of vari-

ables to the optimizer and then iteratively increase this number based

on Lagrangian multipliers as well.

The remainder of this article is structured as follows: in the next

section, we briefly review key concepts from our previous work,

which are required for the proposed algorithm. Afterwards, we intro-

duce both the approach for dimensionality reduction by truncating

the wavelet transforms and for sensitivity-based refinements using

Lagrangian multipliers. The efficacy of the proposed algorithm is

assessed for a case study, which we introduce in the fifth section.

Therein, we address the production planning subject to time-variable

electricity prices for an industrial-scale air separation unit (ASU),

which was designed for increased flexibility in previous work.31 We

utilize high-fidelity power consumption data from steady-state opti-

mizations of a rigorous process model. The nonlinear power con-

sumption characteristic is incorporated into the scheduling problem

by embedding artificial neural networks (ANNs) as powerful surro-

gate models into the optimization.11 In the sixth section, we finally

present the results of our computational study and analyze the con-

vergence behavior of the algorithm with increasing number of opti-

mization variables as well as resulting savings in computational

times.
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2 | PRELIMINARIES

In the following, we focus on the solution of the generic reduced-

space scheduling problem (1a)–(1d). In contrast to our previous

work,23 we confine to problems comprising only continuous optimiza-

tion variables. Note that this limitation is not as restrictive as it

appears: in fact, binary variables often solely stem from piecewise lin-

earizations of nonlinear functions.9,32 Consequently, we emphasize

that a substantial ratio of the scheduling problems considered in the

relevant literature could still be formulated equivalently to Equa-

tions (1a)–(1d).

min
di,t

Φ di,1,…,di,Tð Þ=
XT
t=1

ϕt di,tð Þ ð1aÞ

s:t: 0≤ gl,t di,1,…,di,tð Þ, 8l,t ð1bÞ

0= hm di,1,…,di,Tð Þ, 8m ð1cÞ

dli ≤ di,t ≤ d
u
i , 8i,t ð1dÞ

In Equations (1a)–(1d), the optimal production schedule is iden-

tified by minimizing the objective function Φ(�), e.g., cost, with

respect to the optimization variables, that is, the DoFs di, t, which

denotes the values of the independent process variable di in time

interval t � {1, …, T}. Furthermore, both inequality and equality con-

straints denoted by gl(�) and hm(�), respectively need to be satisfied.

The assumptions concerning the structure of Equations (1a)–(1d)

(e.g., objective is a summation of interval-specific, generally multi-

variate functions, inequalities have to hold in every time step, etc.)

are not necessarily required for the application of the algorithm,

but rather match common scheduling formulations involving oper-

ating limits that have to be obeyed in each interval as well as cumu-

lative production targets. Note that in a reduced-space

formulation, Φ(�), gl, t(�), and hm(�) are explicit functions of the opti-

mization variables di, t.

Without loss of generality, we confine to cases with horizons

lengths of T = 2N, N � {1, 2, …} for the ease of presentation. Work-

arounds for different horizons lengths can be found in our previous

work.23 Moreover, we introduce a permutation matrix P � ℝT × T that

orders the time series of DoFs according to the electricity prices,

that is,

P di,1,…,di,Tð ÞT = ~di,1,…,~di,T
� �T

, di,1,…,di,Tð ÞT =P−1 ~di,1,…,~di,T
� �T

ð2Þ

with ~di,1 denoting the value of the independent process variable di in

the interval with highest electricity price. As a result, the series
~di,1,…,~di,T is likely characterized by less frequent fluctuations than the

original, that is, chronological, time series di, 1, …, di, T.

Essentially, the permutation procedure above is the key to sub-

stantial reductions in the dimensionality of the scheduling prob-

lem (1a)–(1d) as it allows for low-dimensional yet accurate

approximations of the series of permuted DoFs ~di,1,…,~di,T by neg-

lecting numerous insignificant fluctuation patterns, that is, differences

between intervals with similar prices. For a systematic treatment, we

further perform a wavelet transform in the Haar basis,33 which we

denote by WψHaar
�ð Þ. Thereby, we represent the entire series ~di,1,…,~di,T

unambiguously by T coefficients λi, a, b with a� {−1,…,N−1} and b�

{0,…, 2a−1}, which we summarize in the vector λi. The coefficient λi,

−1, 0 corresponds to the scaled mean of the transformed series, the

other T−1 coefficients correspond to scaled amplitudes of shifted

square waves.

3 | DIMENSIONALITY REDUCTION BY
TRUNCATED WAVELET TRANSFORMS

In our previous work,23 we used the information contained in the

coefficients of the wavelet transform to iteratively derive a tailored

temporal discretization for the scheduling problem, assigning one

DoF to multiple intervals. In contrast, we herein propose an alterna-

tive procedure making the derivation of a temporal discretization

superfluous. For this purpose, we insert both the inverse Haar-

wavelet transform (3) and the permutation (2) into the optimization

problem (1a)–(1d).

~di,1,…,~di,T
� �T

=WψHaar

−1 λið Þ ð3Þ

Following the described procedure allows for an equivalent

reduced-space reformulation of (1a)–(1d) exposing the coefficients

λi as only variables to the optimizer (cf. Equations (4a)–(4d)), that

is, we formulate the objective (4a) as well as all constraints

(4b)–(4c) as explicit functions Φψ(�), gψl,t �ð Þ, and hψm �ð Þ of the coefficient

vector λi.

min
λi

Φψ λið Þ ð4aÞ

s:t: 0≤ gψl,t λið Þ, 8l,t ð4bÞ

0= hψm λið Þ, 8m ð4cÞ

dli

..

.

dli

0
BB@

1
CCA≤WψHaar

−1 λið Þ≤
dui

..

.

dui

0
BB@

1
CCA, 8i ð4dÞ

As the inverse Haar-wavelet transform WψHaar

−1 �ð Þ corresponds
to a matrix multiplication by definition, that is, each value of the series
~di,1,…,~di,T is a linear combination of 2N+1 coefficients, we do not

expect a substantial deterioration of the computational perfor-

mance of optimization algorithms if solving Equations (4a)–(4d)

instead of Equations (1a)–(1d). Moreover, optimizations in the

space of wavelet coefficients enable an exploitation of their physi-

cal meaning described above. In particular, summation constraints
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on the time series di, 1, …, di, T that are commonly used to guarantee

reaching desired production targets in the scheduling problem can

be equivalently reformulated by fixing the coefficient λi,− 1, 0:

XT
t =1

di,t = γ, λi,−1,0 =

ffiffiffi
2

p log2T �γ
T

:

Using the scheduling formulation with the wavelet coefficients as

optimization variables (4a)–(4d), dimensionality reductions correspond

to truncations of the wavelet transform, essentially taking up a key

idea from image compression using wavelet transforms.27 Conse-

quently, we only allow a subset of all coefficients denoted by Ui to be

nonzero. Coefficients λi, a, b, (a, b) =2 Ui are set to zero and thereby no

longer treated as optimization variables, adding Equation (5) to the

scheduling problem (4a)–(4d).

λi,a,b =0, 8i, a,bð Þ=2Ui ð5Þ

We finally highlight that for any Ui, any feasible point of the

scheduling problem (4a)–(5) becomes a feasible point of the original

problem (1a)–(1d) if transformed back using Equations (3) and (2).

4 | SENSITIVITY-BASED REFINEMENT
STRATEGY

In this work, we target the development of an algorithm for the effi-

cient iterative adaptation of the set of used, that is, not-truncated,

wavelet coefficients Ui, making the solution of Equations (4a)–(5) con-

verge to the solution of Equations (1a)–(1d) with a substantially

smaller number of optimization variables. For this purpose, we herein

propose to decide on adding a specific truncated pair (a, b) to the set

Ui based on the marginal effect of relaxing the constraints (5)

(cf. Figure 1), thus exploiting the relation:

∂Φψ ,�

∂λi,a,b

����
λi,a,b =0

= μi,a,b, 8i, a,bð Þ=2Ui ð6Þ

with Φψ , * being at least a local and preferably the global minimizer of

Equations (4a)–(5) and μi, a, b denoting the Lagrangian multipliers of

Equation (5). Following this interpretation, we add those truncated

pairs (a, b) to Ui where the (local) sensitivity jμi, a, bj of the objective

with respect to the value of the coefficient are largest. Thereby, Equa-

tion (6) provides a quantitative measure for comparing the benefits in

terms of objective value from adding different coefficients to the

wavelet representation, thus overcoming an important weakness of

our previous work as discussed in the introduction.

As a potential further development of the algorithm in the future,

it might be promising to investigate benefits from using higher-order

sensitivity information, such as a quadratic approximation of the

improvements in the objective function. Along these lines, there

would also arise opportunities for an optimization-based selection of

truncated pairs (a, b) to add to Ui. That is, having an accurate approxi-

mation would allow to construct subproblems for determining the

truncated pairs (a, b), whose utilization would lead to the maximum

improvement in the objective function, which could improve the con-

vergence behavior.

Considering decisions on deletion of insignificant optimization

variables, that is, determination of pairs (a, b) to be truncated, we con-

tinue to apply the criterion proposed by Schlegel et al.24 and used also

in our previous work.23 That is, we continue to decide on deletions by

comparing the absolute values of used coefficients to a threshold εdi .

Thus, if λi,a,bj j< εdi , the pair (a, b) is removed from Ui. Note that this

Start (initial subsets )

Solve (4a)-(5) to global 
optimality

If , delete pair 
from 

Calculate marginal effects of 
relaxing equality constraints (5)

Add pairs with highest 
marginal effects to 

Stop

Stopping 
criterion 
reached?

Optimal solution: 

New subsets: 

No

Yes

F IGURE 1 Flowchart of the proposed
algorithm for sensitivity-based
refinements of truncated wavelet
transforms. The superscript s in the figure
indicates the iteration count
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criterion is already based on sound considerations. In particular, using

a threshold value for determining pairs (a, b) to be truncated is rea-

soned by the scaling of wavelet basis functions that ensures a norm

equality34:

~di,1,…,~di,T
� �T

����
����
2

= λik k2,

which implies that truncating small absolute wavelet coefficients has

only minor effects on the time series of process variables and thereby

will also only insignificantly impair objective values.

We emphasize that in contrast to our previous work,23 the refine-

ment procedure does not need to obey certain rules; instead, any

refinement step is possible at any time. In particular, this enables the

use of wavelet coefficients λi, a, b of a high level of detail, that is, large

a, without previously exploring all levels below. Thereby, we are able

to circumvent additional iterations of the algorithm and avoid the

introduction of insignificant DoFs, that otherwise unnecessarily pro-

long the computational times for identification of a suitable dis-

cretization. Anticipating the presentation of the results below, this

allows for an efficient treatment of cases, in which optimal schedules

are strongly governed by active ramping constraints.

Finally, the algorithm relies on heuristic stopping criteria for ter-

minating the refinement procedure, such as a threshold on the relative

improvement in objective values between consecutive iterations in

the previous work23 or simply a maximum number of used optimiza-

tion variables. We emphasize that these criteria are required in gen-

eral to indicate that sufficiently near-optimal solutions have been

furnished. Note that this is reasoned by the absence of global lower

bounds, that is, from solving relaxations of the problem considering

the full temporal dimensionality, in the general case and thus does not

involve a certificate of optimality.

5 | AIR SEPARATION CASE STUDY

Due to their high electricity consumption as well as inherent possibili-

ties for liquid product storage, DSM-related scheduling of cryogenic

ASUs is an important research field.2 In this section, we first briefly

characterize the considered process configuration. Afterwards, we

present the mathematical model as well as the scheduling formulation

and briefly discuss them in the context of the relevant literature.

5.1 | Process description

We focus on an industrial-scale ASU producing both high-purity liquid

nitrogen (LIN) and oxygen (LOX) that is stored in buffer tanks and dis-

tributed to off-site customers. The considered process configuration

has been tailored to a high load flexibility and is described in detail our

in previous works.31,35 Most importantly, the process configuration

comprises an integrated liquefaction cycle enabling a high ratio of

storable liquid products. Moreover, the configuration allows for liquid-

assisted operation, where stored cryogenic LIN is fed back to the

rectification section. Thereby, the internal column flows and the sepa-

ration performance can be maintained in the desired operating range,

although substantially reducing the power consumption of the process

and hence the liquefaction capacity.

The resulting wide operating range makes the considered process

configuration on the one hand promising for performing DSM with

profitable capabilities for the exploitation of spot electricity market

price spreads on short to medium time-scales (e.g., between day and

night or between working days and weekends). However, on the

other hand, the turbomachinery applied in ASUs is commonly charac-

terized by narrow low-loss operating ranges and significant off-design

efficiency losses if leaving these ranges, resulting in nonlinear process

characteristics (cf. Figure 2). Consequently, scheduling of the consid-

ered process has to be conducted carefully by accounting for its non-

linearities as precisely as possible.

5.2 | Scheduling model

We herein consider scheduling of the described ASU subject to time-

variable hourly day-ahead spot market prices. We assume that all

electricity is purchased at the day-ahead market and that prices for

the entire planning horizon are known. Price data provided in the

Supporting Information is retrieved from EPEX Spot SE (www.

epexspot.com, accessed Apr 2020) and corresponds to German day-

ahead prices from end of September/beginning of October 2018.

Having fixed cumulative production targets, the objective function to

be minimized Φ(�) corresponds to the cost for electricity purchase, in

accordance with the formulation in Equation (1a), given by:

Φ LINt,LOXtð Þ=
XT
t =1

ϕt LINt,LOXtð Þ with ϕt LINt,LOXtð Þ

= ct�P LINt,LOXtð Þ

150
1000

LIN [mol/s]

50120

10

LOX [mol/s]

100

P
ow

er
 [

M
W

]

080

20

60 -50

F IGURE 2 Operating range and power consumption
characteristics of the considered ASU configuration comprising an
integrated liquefaction cycle and allowing for liquid-assisted
operation. The power consumption is calculated using an artificial
neural network fitted to optimized steady-state operating points using
a rigorous process model from literature.31 ASU, air separation unit
[Color figure can be viewed at wileyonlinelibrary.com]
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where ct denotes the day-ahead price for hour t and P(�) the instanta-

neous power consumption given as a function of the production rates

LINt and LOXt. Note that throughout the manuscript, we omit the

multiplication with the interval length Δt = 1 hr for readability. Fur-

thermore, we impose operating limits on the two production rates:

−50 mol=s≤ LINt ≤150 mol=s, 8t
50 mol=s≤ LOXt ≤130 mol=s, 8t:

Note that in the inequalities above, the negative lower bound for

the LIN production corresponds to the aforementioned possibility to

feedback stored LIN from the tank. In order to ensure reaching the

production targets, we require the average production rates to equal

the nominal production of LINnom = LOXnom = 120 mol/s in each case,

thus demanding:

1
T

XT
t=1

LINt = LINnom

1
T

XT
t=1

LOXt = LOXnom:

The power consumption of the process Pt(LINt, LOXt) is calcu-

lated using an ANN as nonlinear surrogate model resulting in the

surface given in Figure 2. Note that this surface is nonconvex, moti-

vating the use of deterministic global optimization for solving the

scheduling problems in the following. In particular, one finds uni-

variate functions (fixed LIN and varying LOX and vice versa) with

flat plateaus comprising inflection points and partially even with

local minima. For generating the training data, we herein used

steady-state optimizations of the rigorous dynamic process model

from our previous work,31 extended by the consideration of off-

design efficiency losses in the turbomachinery. The ANN is fitted

to 184 optimized stationary operating points, which are equally dis-

tributed across the entire operating range, using the MATLAB

R2019a Deep Learning Toolbox (MathWorks, Inc.) and comprises

one hidden layer with six neurons and hyperbolic tangent activa-

tion functions. The corresponding MATLAB object including all

weights and biases as well as the training data set is provided in the

Supporting Information. The ANN fits the training data with a maxi-

mum relative error below 2% and a mean percentage error of

�0.5%. The use of a nonlinear surrogate model herein corresponds

to an advancement compared to the vast majority of previous liter-

ature that either use simplified linear characteristics,4-6,36 which

potentially introduces significant approximation errors, or involve

the identification of piecewise-linearized surrogate models,8,37-39

which potentially requires large numbers of disjunctions for being

accurate.

We further assume that the process can be operated in a continu-

ous way within its operating range. In this case, we do not need addi-

tional binary variables indicating active modes. In particular, we

thereby also omit possibilities for temporary shutdowns of the entire

plant, which have been considered in most of the referenced works.

However, in case of the herein considered process configuration,

opportunities for temporary shut-downs are of limited additional eco-

nomic potential considering the existing possibilities for reductions of

the power consumption by >50% (cf. Figure 2) on the one hand and

large durations with off-spec production during shut-down or start-up

periods on the other hand.40

As ASUs are characterized by large liquid volumes41 that lead

to time constants in a similar order as time scales of spot electricity

markets,13 process dynamics further need to be accounted for in

the scheduling.42 For this purpose, we impose constraints on the

change in production rates, as widely done in scheduling practice

to ensure that load changes can be tracked without violating prod-

uct requirements.6,8,39 Revisiting the results presented in our previ-

ous work concerning the process dynamics,35 the following

constraints appear suitable, so that common industrially applied

control systems would be able to track all scheduled set-point

changes.

−15 mol=s≤ LINt−LINt−1 ≤15 mol=s, 8t
−15 mol=s≤ LOXt−LOXt−1 ≤15 mol=s, 8t:

Note that changing the control system to a more advanced one,

such as nonlinear model predictive control, could involve substantially

loosened ramping limits43,44 and thereby increase potential savings,

which should be thoroughly investigated in the future. Moreover, we

acknowledge that numerous works argue to construct dynamic surro-

gate models13,45,46 for explicitly capturing the process dynamics and

demonstrate their successful application to the scheduling of

ASUs.9,47,48 This discussion is however out of the scope of this manu-

script. Nevertheless, we emphasize that the presented approach is

conceptually also applicable to scheduling problems involving dynamic

process models as will be briefly discussed in the conclusion, but leave

this for future work.

Finally, we consider that the storable amount of product is lim-

ited. In particular, we restrict the cumulative over-/underproduction,

so that the nominal production can be kept up for not more than 12

hr by using the available storage capacities, thus requiring:

−6�LINnom ≤
Xt

τ =1

LINτ−LINnomð Þ≤6�LINnom, 8t

−6�LOXnom ≤
Xt

τ =1

LOXτ−LOXnomð Þ≤6�LOXnom, 8t:

The entire scheduling problem can be formulated equivalently to

Equations (1a)–(1d) by selecting d1, t = LINt and d2, t = LOXt, making

the proposed algorithm applicable to this problem. Consequently, we

expose the coefficients λ1, a, b and λ2, a, b of the wavelet transforms of

the permuted time series of production rates as optimization variables

to the solver. The objective and every presented constraint are formu-

lated as explicit functions thereof by using Equations (3) and (2). Note

that according to discussion about the physical meaning of the wave-

let coefficients, the constraints that ensure reaching the production
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target can be reformulated fixing the first wavelet coefficient to

λ1,−1,0 =
ffiffiffi
2

p log2T �T�LINnom and λ1,−1,0 =
ffiffiffi
2

p log2T �T�LOXnom.

6 | PERFORMANCE ASSESSMENT

The reduced-space scheduling problem is implemented and solved

using our in-house open-source software for deterministic global opti-

mization MAiNGO49 based on McCormick relaxations.25,50,51 The

reduced-space implementation substantially reduces the number of

optimization variables when using ANNs, leading to significant

improvements in the computational performance.11 The ANNs func-

tions have been made accessible using the MeLOn—Machine Learning

models for Optimization toolbox (git.rwth-aachen.de/avt.

svt/public/MeLOn).

We apply a relative optimality tolerance of 2% in accordance with

the maximum regression error of the ANN. Furthermore, we impose a

CPU time limit of 100,000 s. In order to get the values of the Lagrang-

ian multipliers of the constraints (5), we perform an additional a

posteriori local search starting from the best feasible point using

IPOPT.52 All calculation are conducted on one core of an Intel Xeon

CPU E5-2630 v3 at 2.40 GHz with 192 GB RAM.

Moreover, we apply threshold values εd1 = λ1,−1,0�10−3 and

εd2 = λ2,−1,0�10−3 respectively for truncating a coefficient of the wave-

let transform in the optimization problem in the next iteration. After-

wards, we add those pairs (a, b) of truncated wavelet coefficient to

the set Ui for the next iteration, where the marginal effect of relaxing

Equation (5), that is, the absolute of the Lagrangian multiplier, is

highest. This is done until the total number of optimization variables

between two iteration is increased by four. Note that this procedure

is primarily chosen for illustration purposes as it allows for displaying

the effects of adding additional optimization variables in a high resolu-

tion. With regard to a practical application of the algorithm, other

criteria are possible as well as discussed previously.

6.1 | Convergence of the algorithm

In this section, we analyze the course of objective and optimal vari-

able values over the iterations of the algorithm. Note that global

deterministic solutions when considering the full dimensionality, that

is, using an untruncated wavelet transform, are computationally

intractable. Thus, a stochastic global approach relying on multi-start

local searches is applied to obtain benchmark values for using the

untruncated transforms. This choice is justified by the good perfor-

mance of local searches with IPOPT performed during pre-processing

in MAiNGO, that is, no improvements of the upper bounds have been

observed within the CPU time limit in any case. Consequently, we

herein scale all objective values for comparison purpose between the

benchmark from multi-start local optimizations using the untruncated

transform (0%) and the objective value of a constant production using

only the fixed coefficients λ1, − 1, 0 and λ2, − 1, 0 (100%). Consequently,

the scaled objective values indicate which percentage of the

maximum achievable cost savings are discarded by truncating the

wavelet transform.

In Figure 3, we show the course of the scaled objective value over

the iterations of the algorithm for the different horizon lengths of

T = 128, 256, 512 hourly intervals. The algorithm furnishes a series of

feasible solutions with objective values that decrease monotonically

and converge towards the benchmark values from multi-start local

optimizations, that is, the presumable global optima using the

untruncated wavelet transform, for all considered horizon lengths.

Moreover, it can be seen that high percentages of the maximum

achievable cost savings can be reached even when using substantially

truncated wavelet transforms.

Table 1 further gives a comparison of the minimum numbers of

optimization variables that are required for reaching desired percent-

ages of the maximum savings. Thereby, we illustrate how the algo-

rithm circumvents a linear scaling in the number of optimization

variables with the number of considered scheduling intervals by con-

fining to low-dimensional yet accurate approximations that suffice for

exploiting large proportions of the saving potentials. For instance, if
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F IGURE 3 Optimal objective value in the course of the algorithm
as a function of the number of variables exposed to the solver in the
respective iterations. Values are scaled between a constant operation
(100%) and the benchmark from multi-start local optimization when
using the untruncated wavelet transform (0%). Symbols indicate
varying horizon lengths. Squares (□): horizon length of 128 hourly
intervals, diamonds (◊): 256 hourly intervals, triangles (Δ): 512 hourly
intervals [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 1 Comparison of the minimum number of required
optimization variables for reaching a desired scaled objective value in
case of varying horizon lengths

#Opt. variables for desired objective value (–)

#Intervals 10% 5% 2% 1%

128 13 17 22 35

256 15 20 35 62

512 20 31 49 92
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comparing the 128 hr scheduling horizon to the 512 hr, that is, four

times as many intervals, we find that only �50% more optimization

variables are required if confining to 90% of the maximum savings.

Likewise, �80% more optimization variables are required for 95% of

the maximum savings and 2.2 times as many for 98%. Even if demand-

ing the exploitation 99% of the saving potentials, 2.6 and thus still

substantially less than four times as many optimization variables are

required.

In addition to the discussion of objective values, the courses of

the optimal variable values over the iterations of the algorithm, that

is, the optimized production schedules, are given in Figure 4. It can

be seen that the algorithm furnishes feasible solutions that con-

verge to the benchmark time series considering the full dimensional-

ity, that is, an optimal untruncated wavelet transform, even in cases

where the optimum is strongly governed by active ramping con-

straints. Furthermore, we notice that only a very limited number of

nonzero wavelet coefficients, that is, optimization variables, suffices

for a detailed reproduction of the most important fluctuations of

the optimum when considering the full dimensionality. In particular,

the iterations in Figure 4 correspond to reductions in the number of

optimization variables compared to an untruncated wavelet trans-

form (d) of 93.75% (a), 87.5% (b), and 81.25% (c), respectively, dem-

onstrating the ability of accurately reproducing large and strongly

fluctuating time series from only few important wavelet

coefficients.

Finally, in Figure 5, we compare the convergence behavior of

our proposed sensitivity-based refinement strategy to the system-

atic yet heuristic procedure from our previous work23 for a horizon

length of T = 128 hourly intervals. As can be seen, the ability to iden-

tify suitable low-dimensional representations tailored to the charac-

teristics of the original problem, such as active ramping constraints,

is substantially enhanced by the sensitivity-based refinement proce-

dure proposed herein. Thus, if we instead apply the refinement pro-

cedure from the previous work, the performance is poorer, so that
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F IGURE 4 Optimized production
schedules after selected iterations of
the algorithm. (a): after the fourth
iteration using 16 optimization
variables, (b): after the eighth iteration
using 32 optimization variables, (c):
after the twelfth iteration using
48 optimization variables, and (d):
from multi-start local solutions

considering the full time series, that is,
using an untruncated wavelet
transform with 256 optimization
variables. Dashed lines depict the LIN
production, solid lines correspond to
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[Color figure can be viewed at
wileyonlinelibrary.com]

10 20 30 40 50

#Optimization variables [-]

0

1

2

3

4

5

Sc
al

ed
 o

bj
ec

ti
ve

 v
al

ue
 [

%
]

F IGURE 5 Comparison of the course of the optimal objective
value for a horizon length of 128 using the sensitivity-based
refinement strategy presented in this work (squares □) vs. the
algorithm from our previous work23 using a heuristic criterion for
refinements (asterisks *) [Color figure can be viewed at
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similarly close approximations of the optima when considering the full

dimensionality in terms of objective and variable values require more

optimization variables. Note that due to a worst-case exponential

scaling of computational times when performing deterministic global

optimizations (see, below) in both cases, the achieved reductions in the

number of optimization variables through the sensitivity-based refine-

ment strategy correspond to highly promising times savings. Likewise,

iterations using a similar number of optimization variables and thus

resulting in similar computational times furnish improved approxima-

tions through the sensitivity-based refinement strategy.

6.2 | Computational performance

In this section, we discuss the savings in computational time

enabled by the use of the proposed algorithm in comparison to solu-

tion approaches considering the full temporal dimensionality. In par-

ticular, we observe beneficial effects of truncating the wavelet

transform for converging the lower bound in branch and bound

algorithms to deterministic global optimization, which allows for

obtaining converged solutions within the time limit. For illustration,

we summarize the CPU times spent in MAiNGO's branch and bound

procedure in Figure 6 for all problems, where a converged solution

could have been obtained within the time limit. As can be seen,

using the proposed refinement strategy successfully circumvents an

unfavorable, worst-case exponential, scaling of computational times

with the horizon length, that would be observed in solution

approaches considering the full dimensionality. One rather finds

that the CPU times only scale exponentially with the number of

optimization variables (given a fixed horizon length), whereas they

scale linearly with the horizon length (given a fixed number of opti-

mization variables). Thus, by sensibly truncating the number of opti-

mization variables, solutions are enabled in reasonable time that

leave only small percentages of the maximum achievable savings

unexploited that are in a similar order of magnitude as the relative

optimality tolerance of the solver. More precisely, the 2% gap in

savings is undercut after a CPU time of O 101 s
� �

in case of T = 128

hourly scheduling intervals. In case of T = 256, this can still be

achieved within 103…104 s. Even for T = 512, we expect this to be

computationally tractable, considering ready-to-use opportunities for

speed-ups by using parallel computing capabilities on local machines

(�10 cores).

Beside the opportunities for reducing the computational time for

obtaining converged global optima, we observe a nearly linear scaling

of computational times in the pre-processing with the number of opti-

mization variables. Consequently, the algorithm appears also promis-

ing for reducing the computational burden for obtaining stationary

feasible points.

7 | CONCLUSION

We present an algorithm for identifying low-dimensional yet highly

accurate approximations of nonlinear scheduling problems subject

to time-variables electricity prices. We first apply a wavelet trans-

form of the time series of independent process variables, allowing to

formulate a reduced-space optimization problem exposing only the

wavelet coefficients to the optimizer. Thereby, we enable reductions

in the dimensionality of the optimization problem by truncating the

wavelet transform. Decisions concerning the use of specific wavelet

coefficients are iteratively made based on sensitivity information

from the Lagrangian multipliers. The algorithm is applied to the

scheduling of an industrial-scale ASU, where we use an ANN as a

surrogate model representing the nonlinear power consumption

characteristics of the plant obtained from optimizations using a rig-

orous process model.

We demonstrate that substantially truncated wavelet transforms

are still able to reproduce time series that allow for the exploitation of

high percentages of the maximum achievable savings. Moreover, we

show that the reductions in the dimensionality of the optimization

problems lead to significant savings in computational times when per-

forming deterministic global optimizations. This circumvents a worst-
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case exponential scaling of solution times with the horizon length,

which characterizes solution approaches considering the full dimen-

sionality. Consequently, we hold the proposed algorithm to be highly

useful if targeting the solution of strongly nonconvex optimization

problems involving multiple local solutions.

Furthermore, the identified savings in computational times for local

searches make the algorithm promising for applications where solution

times are of crucial importance, for example, to ensure real-time capabil-

ity. Here, we highlight in particular that single-shooting approaches to

dynamic optimization are formulated in a similar way as the reduced-

space quasi-stationary scheduling addressed in this work with both the

objective as well as the path-constrained variables being explicit func-

tions of the parameterized, commonly piecewise-constant input signals

while hiding the actual model, that is, the state integration in case of

dynamic optimization, from the optimizer.53 Consequently, such a for-

mulation would also allow to expose the coefficients of the wavelet

transforms of the input signals as only variables to the optimizer, making

the proposed refinement strategy applicable. Thus, promising future

fields of application will certainly also include moving horizon appli-

cations involving nonlinear dynamic optimizations, which aim at inte-

grating both the scheduling and the control perspective. The

application of the presented algorithm for scheduling with low-

dimensional dynamic surrogate models47,54 and economic optimiza-

tions directly in the control layer using a detailed dynamic

model35,55,56 is thus left for future work.

An important research perspective lies in the extension of the algo-

rithm towards the handling of scheduling problems that comprise logic

disjunctions or conditional statements, that is, to those problems where

binary variables in state-of-the-art formulations do not solely stem from

piecewise linearizations and could thus not be eliminated by using the

original (smooth) nonlinear function. Here, it should be thoroughly inves-

tigated if alternative formulations exist that describe the relationships

but forgo binary variables. In particular, progress mostly made in the

area of dynamic optimization regarding nonsmooth optimization57-60 as

well as the handling of complementarity constraints61-64 already bear a

potential for eliminating the binary variables in many conventional prob-

lem formulations, which would in these cases allow for the direct appli-

cation of the proposed sensitivity-based refinement strategy using

Lagrangian multipliers. In addition, we are still interested in a tailored

treatment for binary DoFs similar to that of continuous ones, that is,

using truncatable transforms and providing quantitative measures for

decisions on refinements. Along these lines, future research should also

investigate if the underlying concepts of our work (in particular, the

reduced-space optimization and the truncated wavelet transforms) are

computationally beneficial as well in case of mixed-integer linear sched-

uling problems, which have been extensively studied in literature.

ACKNOWLEDGMENTS

The authors gratefully acknowledge the financial support of the

Kopernikus project SynErgie by the Federal Ministry of Education and

Research (BMBF) and the project supervision by the project manage-

ment organization Projektträger Jülich. The authors further thank

Adrian Caspari for providing the case study and Dominik Bongartz as

well as Jaromil Najman for helpful advice during the use of MAiNGO.

Open access funding enabled and organized by Projekt DEAL.

ORCID

Pascal Schäfer https://orcid.org/0000-0002-3268-8976

Artur M. Schweidtmann https://orcid.org/0000-0001-8885-6847

Alexander Mitsos https://orcid.org/0000-0003-0335-6566

REFERENCES

1. Mitsos A, Asprion N, Floudas CA, et al. Challenges in process optimi-

zation for new feedstocks and energy sources. Comput Chem Eng.

2018;113:209-221.

2. Zhang Q, Grossmann IE. Enterprise-wide optimization for industrial

demand side management: fundamentals, advances, and perspectives.

Chem Eng Res Des. 2016;116:114-131.

3. Daryanian B, Bohn RE, Tabors RD. Optimal demand-side response to

electricity spot prices for storage-type customers. IEEE Trans Power

Syst. 1989;4:897-903.

4. Ierapetritou MG, Wu D, Vin J, Sweeney P, Chigirinskiy M. Cost mini-

mization in an energy-intensive plant using mathematical program-

ming approaches. Ind Eng Chem Res. 2002;41:5262-5277.

5. Karwan MH, Keblis MF. Operations planning with real time pricing of

a primary input. Comput Oper Res. 2007;34:848-867.

6. Mitra S, Grossmann IE, Pinto JM, Arora N. Optimal production plan-

ning under time-sensitive electricity prices for continuous power-

intensive processes. Comput Chem Eng. 2012;38:171-184.

7. Mitra S, Sun L, Grossmann IE. Optimal scheduling of industrial com-

bined heat and power plants under time-sensitive electricity prices.

Energy. 2013;54:194-211.

8. Zhang Q, Grossmann IE, Heuberger CF, Sundaramoorthy A, Pinto JM.

Air separation with cryogenic energy storage: optimal scheduling con-

sidering electric energy and reserve markets. AIChE J. 2015;61:1547-

1558.

9. Kelley MT, Pattison RC, Baldick R, Baldea M. An MILP framework for

optimizing demand response operation of air separation units. Appl

Energy. 2018;222:951-966.

10. Cozad A, Sahinidis NV, Miler DC. Learning surrogate models for sim-

ulationbased optimization. AIChE J. 2015;60:2211-2227.

11. Schweidtmann AM, Mitsos A. Deterministic global optimization with

artificial neural networks embedded. J Optim Theory App. 2019;180:

925-948.

12. Lizarraga-Garcia E, Ghobeity A, Totten M, Mitsos A. Optimal opera-

tion of a solar-thermal power plant with energy storage and electric-

ity buy-back from grid. Energy. 2013;51:61-70.

13. Pattison RC, Touretzky CR, Johansson T, Harjunkoski I, Baldea M. Optimal

process operations in fast-changing electricity markets: framework for

scheduling with low-order dynamic models and an air separation applica-

tion. Ind Eng Chem Res. 2016;55:4562-4584.

14. Ghobeity A, Mitsos A. Optimal time-dependent operation of seawater

reverse osmosis. Desalination. 2010;263:76-88.

15. Teichgraeber H, Brandt AR. Clustering methods to find representative

periods for the optimization of energy systems: an initial framework

and comparison. Appl Energy. 2019;239:1283-1293.

16. Lythcke-Jorgensen CE, Münster M, Ensinas AV, Haglind F. A method

for aggregating external operating conditions in multi-generation sys-

tem optimization models. Appl Energy. 2016;166:59-75.

17. Poncelet K, Höschle H, Delarue E, Virag A, Dhaeseleer W. Selecting

representative days for capturing the implications of integrating inter-

mittent renewables in generation expansion planning problems. IEEE

Trans Power Syst. 2017;32:1936-1948.

18. Bahl B, Lützow J, Shu D, et al. Rigorous synthesis of energy systems

by decomposition via time-series aggregation. Comput Chem Eng.

2018;112:70-81.

10 of 12 SCHÄFER ET AL.

https://orcid.org/0000-0002-3268-8976
https://orcid.org/0000-0002-3268-8976
https://orcid.org/0000-0001-8885-6847
https://orcid.org/0000-0001-8885-6847
https://orcid.org/0000-0003-0335-6566
https://orcid.org/0000-0003-0335-6566


19. Baumgärtner N, Bahl B, Hennen M, Bardow A. RiSES3:rigorous syn-

thesis of energy supply and storage systems via time-series relaxation

and aggregation. Comput Chem Eng 2019;127:127-139.

20. Baumgärtner N, Shu D, Bahl B, Hennen M, Hollermann DE, Bardow A.

DeLoop: decomposition-based long-term operational optimization of

energy systems with time-coupling constraints. Energy. 2020;198:117272.

21. Pineda S, Morales JM. Chronological time-period clustering for opti-

mal capacity expansion planning with storage. IEEE Trans Power Syst.

2018;33:7162-7170.

22. Palys MJ, Daoutidis P. Using hydrogen and ammonia for renewable

energy storage: a geographically comprehensive techno-economic

study. Comput Chem Eng. 2020;136:106785.

23. Schäfer P, Schweidtmann AM, Lenz PHA, Markgraf HMC, Mitsos A.

Wavelet-based grid-adaptation for nonlinear scheduling subject to

time-variable electricity prices. Comput Chem Eng. 2020;132:106598.

24. Schlegel M, Stockmann K, Binder T, Marquardt W. Dynamic optimiza-

tion using adaptive control vector parameterization. Comput Chem

Eng. 2005;29:1731-1751.

25. Mitsos A, Chachuat B, Barton P. McCormick-based relaxations of

algorithms. SIAM J Optim. 2009;20:573-601.

26. Bongartz D, Mitsos A. Deterministic global optimization of process

flowsheets in a reduced space using McCormick relaxations. J Global

Optim. 2017;69:761-796.

27. Antonini M, Barlaud M, Mathieu P, Daubechies I. Image coding using

wavelet transform. IEEE Trans Image Process. 1992;1:205-220.

28. Flores-Quiroz A, Palma-Behnke R, Zakeri G, Moreno R. A column

generation approach for solving generation expansion planning prob-

lems with high renewable energy penetration. Electr Pow Syst Res.

2016;136:232-241.

29. Lara CL, Mallapragada DS, Papageorgiou DJ, Venkatesh A,

Grossmann IE. Deterministic electric power infrastructure planning:

mixed-integer programming model and nested decomposition algo-

rithm. Eur J Oper Res. 2018;271:1037-1054.

30. Flores-Quiroz A, Pinto JM, Zhang Q. A column generation approach

to multiscale capacity planning for power-intensive process networks.

Optim Eng. 2019;20:1001-1027.

31. Caspari A, Offermanns C, Schäfer P, Mhamdi A, Mitsos A. A flexible

air separation process: 1. Design and steady-state optimizations.

AIChE J. 2019;65:e16705.

32. Schäfer P, Westerholt H, Schweidtmann AM, Ilieva S, Mitsos A.

Model-based bidding strategies on the primary balancing market for

energy-intense processes. Comput Chem Eng. 2019;120:4-14.

33. Hubbard BB. The world according to wavelets: the story of a mathemati-

cal technique in the making. Wellesley, MA: AK Peters, Ltd; 1996.

34. Mallat SG. Multiresolution approximations and wavelet orthonormal

bases of L2(R). Trans Am Math Soc. 1989;315:69-87.

35. Caspari A, Offermanns C, Schäfer P, Mhamdi A, Mitsos A. A flexible

air separation process: 2. Optimal operation using economic model

predictive control. AIChE J. 2019;65:e16721.

36. Mitra S, Pinto JM, Grossmann IE. Optimal multi-scale capacity plan-

ning for power-intensive continuous processes under time-sensitive

electricity prices and demand uncertainty. Part I: modeling. Comput

Chem Eng. 2014;65:89-101.

37. Zhang Q, Sundaramoorthy A, Grossmann IE, Pinto JM. A discrete-time

scheduling model for continuous power-intensive process networks with

various power contracts. Comput Chem Eng. 2016;84:382-393.

38. Zhang Q, Morari MF, Grossmann IE, Sundaramoorthy A, Pinto JM. An

adjustable robust optimization approach to scheduling of continuous

industrial processes providing interruptible load. Comput Chem Eng.

2016;86:106-119.

39. Obermeier A, Windmeier C, Esche E, Repke J-U. A discrete-time

scheduling model for power-intensive processes taking fatigue of

equipment into consideration. Comput Chem Eng. 2019;195:904-920.

40. Kender R, Wunderlich B, Thomas I, Peschel A, Rehfeldt S, Klein H.

Pressure-driven dynamic simulation of start up and shutdown

procedures of distillation columns in air separation units. Chem Eng

Res Des. 2019;147:98-112.

41. Miller J, Luyben WL, Belanger P, Blouin S, Megan L. Improving agility of

cryogenic air separation plants. Ind Eng Chem Res. 2008;47:394-404.

42. Baldea M, Harjunkoski I. Integrated production scheduling and process

control: a systematic review. Comput Chem Eng. 2014;71:377-390.

43. Cao Y, Swartz CLE, Flores-Cerrillo J. Preemptive dynamic operation

of cryogenic air separation units. AIChE J. 2017;63:3845-3859.

44. Schäfer P, Bering LF, Caspari A, Mhamdi A, Mitsos A. Nonlinear dynamic

optimization for improved load-shifting agility of cryogenic air separation

plants. In: Eden MR, Ierapetritou MG, Towler GP, eds. 13th International

Symposium on Process Systems Engineering (PSE 2018). Volume 44 of Com-

puter Aided Chemical Engineering. Amsterdam: Elsevier; 2018:547-552.

45. Du J, Park J, Harjunkoski I, Baldea M. A time scale-bridging approach

for integrating production scheduling and process control. Comput

Chem Eng. 2015;79:59-69.

46. Tsay C, Baldea M. Integrating production scheduling and process control

using latent variable dynamic models. Control Eng Pract. 2020;94:104201.

47. Pattison RC, Touretzky CR, Harjunkoski I, Baldea M. Moving horizon

closed-loop production scheduling using dynamic process models.

AIChE J. 2017;63:639-651.

48. Tsay C, Kumar A, Flores-Cerrillo J, Baldea M. Optimal demand

response scheduling of an industrial air separation unit using data-

driven dynamic models. Comput Chem Eng. 2019;126:22-34.

49. Bongartz D, Najman J, Sass S, Mitsos A. MAiNGO—McCormick-based

Algorithm for Mixed-integer Nonlinear Global Optimization. 2018.

http://permalink.avt.rwth-aachen.de/?id=729717.

50. McCormick GP. Computability of global solutions to factorable non-

convex programs: part I—convex underestimating problems. Math

Program. 1976;10:147-175.

51. Tsoukalas A, Mitsos A. Multivariate McCormick relaxations. J Global

Optim. 2014;59:633-662.

52. Wächter A, Biegler LT. On the implementation of an interior-point fil-

ter line-search algorithm for large-scale nonlinear programming. Math

Program. 2006;106:25-57.

53. Biegler LT. Nonlinear programming. Philadelphia: Society for Industrial

and Applied Mathematics; 2010.

54. Otashu JI, Baldea M. Demand response-oriented dynamic modeling

and operational optimization of membrane-based chlor-alkali plants.

Comput Chem Eng. 2019;121:396-408.

55. Cao Y, Swartz CLE, Flores-Cerrillo J. Optimal dynamic operation of a

high-purity air separation plant under varying market conditions. Ind

Eng Chem Res. 2016;55:9956-9970.

56. Schäfer P, Caspari A, Mhamdi A, Mitsos A. Economic nonlinear model

predictive control using hybrid mechanistic data-driven models for

optimal operation in real-time electricity markets: in-silico application

to air separation processes. J Process Control. 2019;84:171-181.

57. Sahlodin AM, Watson HAJ, Barton PI. Nonsmooth model for dynamic

simulation of phase changes. AIChE J. 2016;62:3334-3351.

58. Khan KA, Barton PI. Generalized derivatives for hybrid systems. IEEE

Trans Autom Control. 2017;62:3193-3208.

59. Stechlinski P, Patrascu M, Barton PI. Nonsmooth differential-algebraic

equations in chemical engineering. Comput Chem Eng. 2018;114:52-68.

60. Barton PI, Khan KA, Stechlinski P, Watson HAJ. Computationally rele-

vant generalized derivatives: theory, evaluation and applications.

Optim Methods Softw. 2018;33:1030-1072.

61. Raghunathan AU, Biegler LT. Mathematical programs with equilibrium

constraints (MPECs) in process engineering. Comput Chem Eng. 2003;

27:1381-1392.

62. Raghunathan AU, Soledad Diaz M, Biegler LT. An MPEC formulation

for dynamic optimization of distillation operations. Comput Chem Eng.

2004;28:2037-2052.

63. Baumrucker BT, Renfro JG, Biegler LT. MPEC problem formulations

and solution strategies with chemical engineering applications.

Comput Chem Eng. 2008;32:2903-2913.

SCHÄFER ET AL. 11 of 12

http://permalink.avt.rwth-aachen.de/?id=729717


64. Caspari A, Lüken L, Schäfer P, et al. Dynamic optimization with com-

plementarity constraints: smoothing for direct shooting. Comput

Chem Eng. 2020;139:106891.

SUPPORTING INFORMATION

Additional supporting information may be found online in the

Supporting Information section at the end of this article.

How to cite this article: Schäfer P, Schweidtmann AM,

Mitsos A. Nonlinear scheduling with time-variable electricity

prices using sensitivity-based truncations of wavelet

transforms. AIChE J. 2020;66:e16986. https://doi.org/10.

1002/aic.16986

12 of 12 SCHÄFER ET AL.

https://doi.org/10.1002/aic.16986
https://doi.org/10.1002/aic.16986

	Nonlinear scheduling with time-variable electricity prices using sensitivity-based truncations of wavelet transforms
	1  INTRODUCTION
	2  PRELIMINARIES
	3  DIMENSIONALITY REDUCTION BY TRUNCATED WAVELET TRANSFORMS
	4  SENSITIVITY-BASED REFINEMENT STRATEGY
	5  AIR SEPARATION CASE STUDY
	5.1  Process description
	5.2  Scheduling model

	6  PERFORMANCE ASSESSMENT
	6.1  Convergence of the algorithm
	6.2  Computational performance

	7  CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES


