001     888784
005     20240712101044.0
024 7 _ |a 2128/26544
|2 Handle
037 _ _ |a FZJ-2020-05213
041 _ _ |a English
100 1 _ |a Niether, Doreen
|0 P:(DE-Juel1)166572
|b 0
|e Corresponding author
111 2 _ |a 2020 EUSMI User Meeting
|c virtual conference
|d 2020-11-19 - 2020-11-19
|w Germany
245 _ _ |a Thermophoresis: The Case of Streptavidin and Biotin
260 _ _ |c 2020
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a Other
|2 DataCite
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a LECTURE_SPEECH
|2 ORCID
336 7 _ |a Conference Presentation
|b conf
|m conf
|0 PUB:(DE-HGF)6
|s 1607955892_18333
|2 PUB:(DE-HGF)
|x Invited
520 _ _ |a Thermophoretic behavior of a free protein changes upon ligand binding and gives access to information on the binding constants. The Soret effect has also been proven to be a promising tool to gain information on the hydration layer, as the temperature dependence of the thermodiffusion behavior is sensitive to solute-solvent interactions [1]. In this work, we perform systematic thermophoretic measurements of the protein streptavidin (STV) and of the complex STV with biotin (B) using thermal diffusion forced Rayleigh scattering (TDFRS) [2]. Our experiments show that the temperature sensitivity of the Soret coefficient is reduced for the complex compared to the free protein. We discuss our data in comparison with recent quasi-elastic neutron scattering (QENS) measurements. As the QENS measurement has been performed in heavy water, we perform additional measurements in water/heavy water mixtures. Finally, we also elucidate the challenges arising from the quantiative thermophoretic study of complex multicomponent systems such as protein solutions. References[1] “Thermophoresis of biological and biocompatible compounds in aqueous solution”; Niether, D; Wiegand, S.; J. Phys. Condens. Matter, 31, 503003, (2019). DOI: 10.1088/1361-648X/ab421c[2] “Thermophoresis: The Case of Streptavidin and Biotin”; Niether, D; Sarter, M; Koenig, B.W. et al; Polymers, 12, 376, (2020). DOI: 10.3390/polym12020376.
536 _ _ |a 551 - Functional Macromolecules and Complexes (POF3-551)
|0 G:(DE-HGF)POF3-551
|c POF3-551
|f POF III
|x 0
700 1 _ |a Sarter, Mona
|0 P:(DE-Juel1)171618
|b 1
700 1 _ |a König, Bernd
|0 P:(DE-Juel1)132009
|b 2
|u fzj
700 1 _ |a Fitter, Jörg
|0 P:(DE-Juel1)131961
|b 3
|u fzj
700 1 _ |a Stadler, Andreas
|0 P:(DE-Juel1)140278
|b 4
|u fzj
700 1 _ |a Wiegand, Simone
|0 P:(DE-Juel1)131034
|b 5
|u fzj
856 4 _ |u https://juser.fz-juelich.de/record/888784/files/2020-11-19_EUSMI_Thermophoresis_Streptavidin.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:888784
|p openaire
|p open_access
|p VDB
|p driver
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)166572
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)132009
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)131961
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)140278
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)131034
913 1 _ |a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-551
|2 G:(DE-HGF)POF3-500
|v Functional Macromolecules and Complexes
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2020
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBI-4-20200312
|k IBI-4
|l Biomakromolekulare Systeme und Prozesse
|x 0
920 1 _ |0 I:(DE-Juel1)IEK-8-20101013
|k IEK-8
|l Troposphäre
|x 1
980 1 _ |a FullTexts
980 _ _ |a conf
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBI-4-20200312
980 _ _ |a I:(DE-Juel1)IEK-8-20101013
981 _ _ |a I:(DE-Juel1)ICE-3-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21