001     888787
005     20201230100827.0
024 7 _ |a 10.25493/C2CW-HFW
|2 doi
037 _ _ |a FZJ-2020-05216
100 1 _ |a Popovych, Oleksandr
|0 P:(DE-Juel1)131880
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Averaged structural and functional connectivities of healthy cohorts based on whole-brain parcellations
260 _ _ |c 2020
|b EBRAINS
336 7 _ |a MISC
|2 BibTeX
336 7 _ |a Dataset
|b dataset
|m dataset
|0 PUB:(DE-HGF)32
|s 1609239074_11204
|2 PUB:(DE-HGF)
336 7 _ |a Chart or Table
|0 26
|2 EndNote
336 7 _ |a Dataset
|2 DataCite
336 7 _ |a DATA_SET
|2 ORCID
336 7 _ |a ResearchData
|2 DINI
520 _ _ |a Brain connectivity is one of the main objects of brain research reflecting the interaction between neuronal populations at a variety of spatial and temporal scales and modalities. The main approaches include the extraction and analysis of the structural connectivity (SC) representing the anatomical axonal tracts and functional connectivity (FC) representing the temporal correlation between neuronal activity of brain regions. Extraction of SC and FC is a complex process requiring a deep knowledge of the data processing methods. The current project is aimed at facilitation of this process and provides an access to the extracted brain connectivities ready for further usage. The data includes SC and resting-state FC for several brain atlases of different granularity, where the parcellation is performed based on functional, anatomical and cytoarchitectonic brain properties. The connectivity is extracted and averaged over several hundreds of healthy subjects from well-known public repositories of neuroimaging data, including the Human Connectome Project (HCP) [Van Essen et al., 2013](https://doi.org/10.1016/j.neuroimage.2013.05.041) and Enhanced Nathan Klein Institute Rockland Sample (eNKI) [Nooner et al., 2012](https://dx.doi.org/10.3389/fnins.2012.00152). The provided SC and FC can be used for group-level investigations of the connectivities and for data-driven mathematical modeling of the resting-state brain dynamics.
536 _ _ |a 574 - Theory, modelling and simulation (POF3-574)
|0 G:(DE-HGF)POF3-574
|c POF3-574
|f POF III
|x 0
536 _ _ |a HBP SGA1 - Human Brain Project Specific Grant Agreement 1 (720270)
|0 G:(EU-Grant)720270
|c 720270
|f H2020-Adhoc-2014-20
|x 1
536 _ _ |a HBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)
|0 G:(EU-Grant)785907
|c 785907
|f H2020-SGA-FETFLAG-HBP-2017
|x 2
588 _ _ |a Dataset connected to DataCite
650 2 7 |a Medicine
|0 V:(DE-MLZ)SciArea-190
|2 V:(DE-HGF)
|x 0
650 1 7 |a Health and Life
|0 V:(DE-MLZ)GC-130-2016
|2 V:(DE-HGF)
|x 0
700 1 _ |a Jung, Kyesam
|0 P:(DE-Juel1)178611
|b 1
|u fzj
700 1 _ |a Domhof, Justin
|0 P:(DE-Juel1)179582
|b 2
|u fzj
700 1 _ |a Eickhoff, Simon
|0 P:(DE-Juel1)131678
|b 3
|u fzj
773 _ _ |a 10.25493/C2CW-HFW
856 4 _ |u https://kg.ebrains.eu/search/instances/Dataset/50c215bc-4c65-4f11-a4cd-98cc92750977
909 C O |o oai:juser.fz-juelich.de:888787
|p openaire
|p VDB
|p ec_fundedresources
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)131880
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)178611
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)179582
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)131678
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-574
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-500
|4 G:(DE-HGF)POF
|v Theory, modelling and simulation
|x 0
914 1 _ |y 2020
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-7-20090406
|k INM-7
|l Gehirn & Verhalten
|x 0
980 _ _ |a dataset
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)INM-7-20090406
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21