001     888809
005     20210130011126.0
024 7 _ |a 10.1128/AEM.00106-20
|2 doi
024 7 _ |a 0003-6919
|2 ISSN
024 7 _ |a 0099-2240
|2 ISSN
024 7 _ |a 1070-6291
|2 ISSN
024 7 _ |a 1098-5336
|2 ISSN
024 7 _ |a 2128/26517
|2 Handle
024 7 _ |a altmetric:76877859
|2 altmetric
024 7 _ |a 32111588
|2 pmid
024 7 _ |a WOS:000529303800005
|2 WOS
037 _ _ |a FZJ-2020-05223
082 _ _ |a 570
100 1 _ |a Bollinger, Alexander
|0 P:(DE-Juel1)168197
|b 0
245 _ _ |a Organic-Solvent-Tolerant Carboxylic Ester Hydrolases for Organic Synthesis
260 _ _ |a Washington, DC [u.a.]
|c 2020
|b Soc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1607940307_18333
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Biocatalysis has emerged as an important tool in synthetic organic chemistry enabling the chemical industry to execute reactions with high regio- or enantioselectivity and under usually mild reaction conditions while avoiding toxic waste. Target substrates and products of reactions catalyzed by carboxylic ester hydrolases are often poorly water soluble and require organic solvents, whereas enzymes are evolved by nature to be active in cells, i.e., in aqueous rather than organic solvents. Therefore, biocatalysts that withstand organic solvents are urgently needed. Current strategies to identify such enzymes rely on laborious tests carried out by incubation in different organic solvents and determination of residual activity. Here, we describe a simple assay useful for screening large libraries of carboxylic ester hydrolases for resistance and activity in water-miscible organic solvents. We have screened a set of 26 enzymes, most of them identified in this study, with four different water-miscible organic solvents. The triglyceride tributyrin was used as a substrate, and fatty acids released by enzymatic hydrolysis were detected by a pH shift indicated by the indicator dye nitrazine yellow. With this strategy, we succeeded in identifying a novel highly organic-solvent-tolerant esterase from Pseudomonas aestusnigri. In addition, the newly identified enzymes were tested with sterically demanding substrates, which are common in pharmaceutical intermediates, and two enzymes from Alcanivorax borkumensis were identified which outcompeted the gold standard ester hydrolase CalB from Candida antarctica
536 _ _ |a 581 - Biotechnology (POF3-581)
|0 G:(DE-HGF)POF3-581
|c POF3-581
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Molitor, Rebecka
|0 P:(DE-Juel1)171724
|b 1
700 1 _ |a Thies, Stephan
|0 P:(DE-Juel1)128936
|b 2
700 1 _ |a Koch, Rainhard
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Coscolín, Cristina
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Ferrer, Manuel
|0 0000-0003-4962-4714
|b 5
700 1 _ |a Jaeger, Karl-Erich
|0 P:(DE-Juel1)131457
|b 6
|e Corresponding author
773 _ _ |a 10.1128/AEM.00106-20
|g Vol. 86, no. 9, p. e00106-20/aem/86/9/AEM.00106-20.atom
|0 PERI:(DE-600)1478346-0
|n 9
|p e00106-20
|t Applied and environmental microbiology
|v 86
|y 2020
|x 1098-5336
856 4 _ |u https://juser.fz-juelich.de/record/888809/files/Applied%20and%20Environmental%20Microbiology-2020-Bollinger-e00106-20.full.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:888809
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)168197
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)171724
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)128936
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)131457
913 1 _ |a DE-HGF
|b Key Technologies
|l Key Technologies for the Bioeconomy
|1 G:(DE-HGF)POF3-580
|0 G:(DE-HGF)POF3-581
|2 G:(DE-HGF)POF3-500
|v Biotechnology
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2020
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-09-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-09-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2020-09-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2020-09-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-09-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2020-09-03
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b APPL ENVIRON MICROB : 2018
|d 2020-09-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2020-09-03
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-09-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-09-03
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-09-03
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-09-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2020-09-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-09-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2020-09-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-09-03
920 1 _ |0 I:(DE-Juel1)IMET-20090612
|k IMET
|l Institut für Molekulare Enzymtechnologie (HHUD)
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IMET-20090612
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21