000888811 001__ 888811
000888811 005__ 20210116101319.0
000888811 0247_ $$2doi$$a10.3389/fmicb.2020.01655
000888811 0247_ $$2Handle$$a2128/26542
000888811 0247_ $$2altmetric$$aaltmetric:86608661
000888811 0247_ $$2pmid$$a32849341
000888811 0247_ $$2WOS$$aWOS:000560547000001
000888811 037__ $$aFZJ-2020-05225
000888811 082__ $$a570
000888811 1001_ $$0P:(DE-Juel1)168345$$aLee, Jungho$$b0
000888811 245__ $$aUstilago maydis Serves as a Novel Production Host for the Synthesis of Plant and Fungal Sesquiterpenoids
000888811 260__ $$aLausanne$$bFrontiers Media$$c2020
000888811 3367_ $$2DRIVER$$aarticle
000888811 3367_ $$2DataCite$$aOutput Types/Journal article
000888811 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1610714533_23281
000888811 3367_ $$2BibTeX$$aARTICLE
000888811 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000888811 3367_ $$00$$2EndNote$$aJournal Article
000888811 520__ $$aSesquiterpenoids are important secondary metabolites with various pharma- and nutraceutical properties. In particular, higher basidiomycetes possess a versatile biosynthetic repertoire for these bioactive compounds. To date, only a few microbial production systems for fungal sesquiterpenoids have been established. Here, we introduce Ustilago maydis as a novel production host. This model fungus is a close relative of higher basidiomycetes. It offers the advantage of metabolic compatibility and potential tolerance for substances toxic to other microorganisms. We successfully implemented a heterologous pathway to produce the carotenoid lycopene that served as a straightforward read-out for precursor pathway engineering. Overexpressing genes encoding enzymes of the mevalonate pathway resulted in increased lycopene levels. Verifying the subcellular localization of the relevant enzymes revealed that initial metabolic reactions might take place in peroxisomes: despite the absence of a canonical peroxisomal targeting sequence, acetyl-CoA C-acetyltransferase Aat1 localized to peroxisomes. By expressing the plant (+)-valencene synthase CnVS and the basidiomycete sesquiterpenoid synthase Cop6, we succeeded in producing (+)-valencene and α-cuprenene, respectively. Importantly, the fungal compound yielded about tenfold higher titers in comparison to the plant substance. This proof of principle demonstrates that U. maydis can serve as promising novel chassis for the production of terpenoids.
000888811 536__ $$0G:(DE-HGF)POF3-583$$a583 - Innovative Synergisms (POF3-583)$$cPOF3-583$$fPOF III$$x0
000888811 588__ $$aDataset connected to CrossRef
000888811 7001_ $$0P:(DE-Juel1)167181$$aHilgers, Fabienne$$b1
000888811 7001_ $$0P:(DE-HGF)0$$aLoeschke, Anita$$b2
000888811 7001_ $$0P:(DE-Juel1)131457$$aJaeger, Karl-Erich$$b3
000888811 7001_ $$0P:(DE-HGF)0$$aFeldbrügge, Michael$$b4$$eCorresponding author
000888811 773__ $$0PERI:(DE-600)2587354-4$$a10.3389/fmicb.2020.01655$$gVol. 11, p. 1655$$p1655$$tFrontiers in microbiology$$v11$$x1664-302X$$y2020
000888811 8564_ $$uhttps://juser.fz-juelich.de/record/888811/files/fmicb-11-01655.pdf$$yOpenAccess
000888811 909CO $$ooai:juser.fz-juelich.de:888811$$popenaire$$popen_access$$pVDB$$pdriver$$pdnbdelivery
000888811 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167181$$aForschungszentrum Jülich$$b1$$kFZJ
000888811 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131457$$aForschungszentrum Jülich$$b3$$kFZJ
000888811 9131_ $$0G:(DE-HGF)POF3-583$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vInnovative Synergisms$$x0
000888811 9141_ $$y2020
000888811 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-08-32
000888811 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-08-32
000888811 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2020-08-32
000888811 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2020-08-32
000888811 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000888811 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bFRONT MICROBIOL : 2018$$d2020-08-32
000888811 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-08-32
000888811 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-08-32
000888811 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-08-32
000888811 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-08-32
000888811 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-08-32
000888811 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-08-32
000888811 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000888811 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2020-08-32
000888811 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2020-08-32
000888811 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-08-32
000888811 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2020-08-32
000888811 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-08-32
000888811 9201_ $$0I:(DE-Juel1)IMET-20090612$$kIMET$$lInstitut für Molekulare Enzymtechnologie (HHUD)$$x0
000888811 980__ $$ajournal
000888811 980__ $$aVDB
000888811 980__ $$aI:(DE-Juel1)IMET-20090612
000888811 980__ $$aUNRESTRICTED
000888811 9801_ $$aFullTexts