001     888815
005     20220222143556.0
024 7 _ |a 10.1007/s00396-020-04791-5
|2 doi
024 7 _ |a 0023-2904
|2 ISSN
024 7 _ |a 0303-402X
|2 ISSN
024 7 _ |a 0368-6590
|2 ISSN
024 7 _ |a 0372-820X
|2 ISSN
024 7 _ |a 1435-1536
|2 ISSN
024 7 _ |a 2128/27397
|2 Handle
024 7 _ |a WOS:000599042600001
|2 WOS
037 _ _ |a FZJ-2020-05229
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Abitaev, Karina
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Adjustable polystyrene nanoparticle templates for the production of mesoporous foams and ZnO inverse opals
260 _ _ |a Heidelberg
|c 2021
|b Springer
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1645452831_27839
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The manifold applications of porous materials, such as in storage, separation, and catalysis, have led to an enormous interest in their cost-efficient preparation. A promising strategy to obtain porous materials with adjustable pore size and morphology is to use templates exhibiting the appropriate nanostructure. In this study, close-packed polystyrene (PS) nanoparticles, synthesized by emulsion polymerization, were used to produce porous PS and ZnO inverse opals. The size and distribution of the polystyrene nanoparticles, characterized by dynamic light scattering (DLS), small-angle neutron scattering (SANS), and scanning electron microscopy (SEM), were controlled via the concentration of sodium dodecyl sulfate (SDS). Systematic measurements of the water/styrene-interfacial tension show that the critical micelle concentration (CMC) of the ternary water–styrene–SDS system, which determines whether monodisperse or polydisperse PS particles are obtained, is considerably lower than that of the binary water–SDS system. The assemblies of close-packed PS nanoparticles obtained via drying were then studied by small-angle X-ray scattering (SAXS) and SEM. Both techniques prove that PS nanoparticles synthesized above the CMC result in a significantly unordered but denser packing of the particles. The polystyrene particles were subsequently used to produce porous polystyrene and ZnO inverse opals. While the former consists of micrometer-sized spherical pores surrounded by extended open-cellular regions of mesopores (Rpore ≈ 25 nm), the latter are made of ZnO-nanoparticles forming a structure of well-aligned interconnected pores.
536 _ _ |a 899 - ohne Topic (POF4-899)
|0 G:(DE-HGF)POF4-899
|c POF4-899
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef
650 2 7 |a Materials Science
|0 V:(DE-MLZ)SciArea-180
|2 V:(DE-HGF)
|x 0
650 1 7 |a Chemical Reactions and Advanced Materials
|0 V:(DE-MLZ)GC-1603-2016
|2 V:(DE-HGF)
|x 0
693 _ _ |a Forschungs-Neutronenquelle Heinz Maier-Leibnitz
|e KWS-1: Small angle scattering diffractometer
|f NL3b
|1 EXP:(DE-MLZ)FRMII-20140101
|0 EXP:(DE-MLZ)KWS1-20140101
|5 EXP:(DE-MLZ)KWS1-20140101
|6 EXP:(DE-MLZ)NL3b-20140101
|x 0
700 1 _ |a Qawasmi, Yaseen
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Atanasova, Petia
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Dargel, Carina
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Bill, Joachim
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Hellweg, Thomas
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Sottmann, Thomas
|0 P:(DE-HGF)0
|b 6
|e Corresponding author
773 _ _ |a 10.1007/s00396-020-04791-5
|0 PERI:(DE-600)1462029-7
|p 243–258
|t Colloid & polymer science
|v 299
|y 2021
|x 1435-1536
856 4 _ |u https://juser.fz-juelich.de/record/888815/files/Abitaev2021_Article_AdjustablePolystyreneNanoparti.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:888815
|p openaire
|p open_access
|p driver
|p VDB:MLZ
|p VDB
|p dnbdelivery
913 1 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF4-890
|0 G:(DE-HGF)POF4-899
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-800
|4 G:(DE-HGF)POF
|v ohne Topic
|x 0
913 0 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF3-620
|0 G:(DE-HGF)POF3-623
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-600
|4 G:(DE-HGF)POF
|v Facility topic: Neutrons for Research on Condensed Matter
|9 G:(DE-HGF)POF3-6G4
|x 0
913 0 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF3-6G0
|0 G:(DE-HGF)POF3-6G15
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-600
|4 G:(DE-HGF)POF
|v FRM II / MLZ
|x 1
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-08-22
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-08-22
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b COLLOID POLYM SCI : 2018
|d 2020-08-22
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-08-22
915 _ _ |a DEAL Springer
|0 StatID:(DE-HGF)3002
|2 StatID
|d 2020-08-22
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-08-22
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-08-22
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-08-22
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2020-08-22
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-08-22
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JCNS-FRM-II-20110218
|k JCNS-FRM-II
|l JCNS-FRM-II
|x 0
920 1 _ |0 I:(DE-588b)4597118-3
|k MLZ
|l Heinz Maier-Leibnitz Zentrum
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)JCNS-FRM-II-20110218
980 _ _ |a I:(DE-588b)4597118-3
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21