000888819 001__ 888819
000888819 005__ 20230310131404.0
000888819 0247_ $$2doi$$a10.3791/61907
000888819 0247_ $$2Handle$$a2128/26546
000888819 0247_ $$2pmid$$a33346200
000888819 0247_ $$2WOS$$aWOS:000646166900037
000888819 037__ $$aFZJ-2020-05233
000888819 041__ $$aEnglish
000888819 082__ $$a610
000888819 1001_ $$0P:(DE-Juel1)165965$$aZheng, Fengshan$$b0$$eCorresponding author$$ufzj
000888819 245__ $$aMagnetic Field Mapping using Off-Axis Electron Holography in the Transmission Electron Microscope
000888819 260__ $$aCambridge, MA$$bJoVE887169$$c2020
000888819 3367_ $$2DRIVER$$aarticle
000888819 3367_ $$2DataCite$$aOutput Types/Journal article
000888819 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1615285136_3530
000888819 3367_ $$2BibTeX$$aARTICLE
000888819 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000888819 3367_ $$00$$2EndNote$$aJournal Article
000888819 520__ $$aOff-axis electron holography is a powerful technique that involves the formation of an interference pattern in a transmission electron microscope (TEM) by overlapping two parts of an electron wave, one of which has passed through a region of interest on a specimen and the other is a reference wave. The resulting off-axis electron hologram can be analyzed digitally to recover the phase difference between the two parts of the electron wave, which can then be interpreted to provide quantitative information about local variations in electrostatic potential and magnetic induction within and around the specimen. Off-axis electron holograms can be recorded while a specimen is subjected to external stimuli such as elevated or reduced temperature, voltage, or light. The protocol that is presented here describes the practical steps that are required to record, analyze, and interpret off-axis electron holograms, with a primary focus on the measurement of magnetic fields within and around nanoscale materials and devices. Presented here are the steps involved in the recording, analysis, and processing of off-axis electron holograms, as well as the reconstruction and interpretation of phase images and visualization of the results. Also discussed are the need for optimization of the specimen geometry, the electron optical configuration of the microscope, and the electron hologram acquisition parameters, as well as the need for the use of information from multiple holograms to extract the desired magnetic contributions from the recorded signal. The steps are illustrated through a study of specimens of B20-type FeGe, which contain magnetic skyrmions and were prepared with focused ion beams (FIBs). Prospects for the future development of the technique are discussed.
000888819 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x0
000888819 536__ $$0G:(DE-HGF)POF3-144$$a144 - Controlling Collective States (POF3-144)$$cPOF3-144$$fPOF III$$x1
000888819 536__ $$0G:(EU-Grant)856538$$a3D MAGiC - Three-dimensional magnetization textures: Discovery and control on the nanoscale (856538)$$c856538$$fERC-2019-SyG$$x2
000888819 536__ $$0G:(EU-Grant)766970$$aQ-SORT - QUANTUM SORTER (766970)$$c766970$$fH2020-FETOPEN-1-2016-2017$$x3
000888819 536__ $$0G:(EU-Grant)823717$$aESTEEM3 - Enabling Science and Technology through European Electron Microscopy (823717)$$c823717$$fH2020-INFRAIA-2018-1$$x4
000888819 536__ $$0G:(DE-Juel-1)Z1422.01.18$$aDARPA, Phase 2 - Defense Advanced Research Projects Agency Manipulation of magnetic skyrmions for logicin- memory applications (Z1422.01.18)$$cZ1422.01.18$$x5
000888819 536__ $$0G:(GEPRIS)405553726$$aDFG project 405553726 - TRR 270: Hysterese-Design magnetischer Materialien für effiziente Energieumwandlung (405553726)$$c405553726$$x6
000888819 588__ $$aDataset connected to CrossRef
000888819 7001_ $$0P:(DE-Juel1)144926$$aKovács, András$$b1$$eCorresponding author$$ufzj
000888819 7001_ $$0P:(DE-Juel1)172928$$aDenneulin, Thibaud$$b2$$ufzj
000888819 7001_ $$0P:(DE-Juel1)157760$$aCaron, Jan$$b3$$ufzj
000888819 7001_ $$0P:(DE-Juel1)171678$$aWeßels, Teresa$$b4$$ufzj
000888819 7001_ $$0P:(DE-Juel1)144121$$aDunin-Borkowski, Rafal E.$$b5$$ufzj
000888819 773__ $$0PERI:(DE-600)2975362-4$$a10.3791/61907$$gno. 166, p. 61907$$pe61907$$tJoVE journal$$v166$$x1940-087X$$y2020
000888819 8564_ $$uhttps://juser.fz-juelich.de/record/888819/files/Invoice_2020-648_Fengshan%20Zheng.pdf
000888819 8564_ $$uhttps://juser.fz-juelich.de/record/888819/files/J-2020-JoVE-magnetic-field-mapping-using-electron-holography.pdf$$yOpenAccess
000888819 8767_ $$82020-648$$92020-08-10$$d2021-02-17$$eHybrid-OA$$jZahlung angewiesen$$zFZJ-2020-03227, 4200 $
000888819 909CO $$ooai:juser.fz-juelich.de:888819$$pdnbdelivery$$popenCost$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
000888819 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165965$$aForschungszentrum Jülich$$b0$$kFZJ
000888819 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144926$$aForschungszentrum Jülich$$b1$$kFZJ
000888819 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172928$$aForschungszentrum Jülich$$b2$$kFZJ
000888819 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157760$$aForschungszentrum Jülich$$b3$$kFZJ
000888819 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171678$$aForschungszentrum Jülich$$b4$$kFZJ
000888819 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144121$$aForschungszentrum Jülich$$b5$$kFZJ
000888819 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000888819 9131_ $$0G:(DE-HGF)POF3-144$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x1
000888819 9132_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000888819 9141_ $$y2020
000888819 915__ $$0LIC:(DE-HGF)CCBYNCND3$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 3.0
000888819 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-08-21
000888819 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-08-21
000888819 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2020-08-21
000888819 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2020-08-21
000888819 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJOVE-J VIS EXP : 2018$$d2020-08-21
000888819 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-08-21
000888819 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-08-21
000888819 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-08-21
000888819 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000888819 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-08-21
000888819 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2020-08-21
000888819 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-08-21
000888819 920__ $$lyes
000888819 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0
000888819 980__ $$ajournal
000888819 980__ $$aVDB
000888819 980__ $$aUNRESTRICTED
000888819 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000888819 980__ $$aAPC
000888819 9801_ $$aAPC
000888819 9801_ $$aFullTexts