001     888819
005     20230310131404.0
024 7 _ |a 10.3791/61907
|2 doi
024 7 _ |a 2128/26546
|2 Handle
024 7 _ |a 33346200
|2 pmid
024 7 _ |a WOS:000646166900037
|2 WOS
037 _ _ |a FZJ-2020-05233
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Zheng, Fengshan
|0 P:(DE-Juel1)165965
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Magnetic Field Mapping using Off-Axis Electron Holography in the Transmission Electron Microscope
260 _ _ |a Cambridge, MA
|c 2020
|b JoVE887169
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1615285136_3530
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Off-axis electron holography is a powerful technique that involves the formation of an interference pattern in a transmission electron microscope (TEM) by overlapping two parts of an electron wave, one of which has passed through a region of interest on a specimen and the other is a reference wave. The resulting off-axis electron hologram can be analyzed digitally to recover the phase difference between the two parts of the electron wave, which can then be interpreted to provide quantitative information about local variations in electrostatic potential and magnetic induction within and around the specimen. Off-axis electron holograms can be recorded while a specimen is subjected to external stimuli such as elevated or reduced temperature, voltage, or light. The protocol that is presented here describes the practical steps that are required to record, analyze, and interpret off-axis electron holograms, with a primary focus on the measurement of magnetic fields within and around nanoscale materials and devices. Presented here are the steps involved in the recording, analysis, and processing of off-axis electron holograms, as well as the reconstruction and interpretation of phase images and visualization of the results. Also discussed are the need for optimization of the specimen geometry, the electron optical configuration of the microscope, and the electron hologram acquisition parameters, as well as the need for the use of information from multiple holograms to extract the desired magnetic contributions from the recorded signal. The steps are illustrated through a study of specimens of B20-type FeGe, which contain magnetic skyrmions and were prepared with focused ion beams (FIBs). Prospects for the future development of the technique are discussed.
536 _ _ |a 143 - Controlling Configuration-Based Phenomena (POF3-143)
|0 G:(DE-HGF)POF3-143
|c POF3-143
|x 0
|f POF III
536 _ _ |a 144 - Controlling Collective States (POF3-144)
|0 G:(DE-HGF)POF3-144
|c POF3-144
|x 1
|f POF III
536 _ _ |a 3D MAGiC - Three-dimensional magnetization textures: Discovery and control on the nanoscale (856538)
|0 G:(EU-Grant)856538
|c 856538
|x 2
|f ERC-2019-SyG
536 _ _ |a Q-SORT - QUANTUM SORTER (766970)
|0 G:(EU-Grant)766970
|c 766970
|x 3
|f H2020-FETOPEN-1-2016-2017
536 _ _ |a ESTEEM3 - Enabling Science and Technology through European Electron Microscopy (823717)
|0 G:(EU-Grant)823717
|c 823717
|x 4
|f H2020-INFRAIA-2018-1
536 _ _ |a DARPA, Phase 2 - Defense Advanced Research Projects Agency Manipulation of magnetic skyrmions for logicin- memory applications (Z1422.01.18)
|0 G:(DE-Juel-1)Z1422.01.18
|c Z1422.01.18
|x 5
536 _ _ |a DFG project 405553726 - TRR 270: Hysterese-Design magnetischer Materialien für effiziente Energieumwandlung (405553726)
|0 G:(GEPRIS)405553726
|c 405553726
|x 6
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Kovács, András
|0 P:(DE-Juel1)144926
|b 1
|e Corresponding author
|u fzj
700 1 _ |a Denneulin, Thibaud
|0 P:(DE-Juel1)172928
|b 2
|u fzj
700 1 _ |a Caron, Jan
|0 P:(DE-Juel1)157760
|b 3
|u fzj
700 1 _ |a Weßels, Teresa
|0 P:(DE-Juel1)171678
|b 4
|u fzj
700 1 _ |a Dunin-Borkowski, Rafal E.
|0 P:(DE-Juel1)144121
|b 5
|u fzj
773 _ _ |a 10.3791/61907
|g no. 166, p. 61907
|0 PERI:(DE-600)2975362-4
|p e61907
|t JoVE journal
|v 166
|y 2020
|x 1940-087X
856 4 _ |u https://juser.fz-juelich.de/record/888819/files/Invoice_2020-648_Fengshan%20Zheng.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/888819/files/J-2020-JoVE-magnetic-field-mapping-using-electron-holography.pdf
909 C O |o oai:juser.fz-juelich.de:888819
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)165965
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)144926
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)172928
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)157760
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)171678
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)144121
913 1 _ |a DE-HGF
|b Energie
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-143
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-100
|4 G:(DE-HGF)POF
|v Controlling Configuration-Based Phenomena
|x 0
913 1 _ |a DE-HGF
|b Energie
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-144
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-100
|4 G:(DE-HGF)POF
|v Controlling Collective States
|x 1
913 2 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF4-890
|0 G:(DE-HGF)POF4-899
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-800
|4 G:(DE-HGF)POF
|v ohne Topic
|x 0
914 1 _ |y 2020
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 3.0
|0 LIC:(DE-HGF)CCBYNCND3
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-08-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-08-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2020-08-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2020-08-21
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b JOVE-J VIS EXP : 2018
|d 2020-08-21
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-08-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-08-21
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-08-21
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-08-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2020-08-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-08-21
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ER-C-1-20170209
|k ER-C-1
|l Physik Nanoskaliger Systeme
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ER-C-1-20170209
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21