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In this paper, we explore the properties of dynamical diffraction coefficients in orbital angular momentum
resolved electron energy-loss magnetic chiral dichroism spectra, in a scanning transmission electron microscopy
setup. We demonstrate that for basic zone axis geometries with fourfold or threefold symmetry the coefficients
are constrained to have simplified forms. By exploiting these properties, we show how a dichroism spectrum
accessible using this technique is only weakly dependent on sample thickness and, more generally, on dynamical
diffraction effects. Our results indicate that in such cases it is possible to determine the orbital and spin com-
ponents of atomic magnetic moments approximately from experimental spectra without the need for additional
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dynamical diffraction calculations.
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I. INTRODUCTION

Since the work of Schattschneider and colleagues [1],
electron energy-loss magnetic chiral dichroism (EMCD) has
attracted the attention of many researchers in the field of
electron microscopy because of its potential for providing
information about the magnetic properties of materials with
subnanometric spatial resolution. As in the case of x-ray mag-
netic circular dichroism [2,3], sum rules for EMCD, which
were derived independently by Calmels et al. [4] and Rusz
et al. [5], in principle, permit quantification of the orbital
(mop) and spin (mg) components of the magnetic moment
per atom in a sample by relating these material-specific prop-
erties to the experimentally accessible signal. In this way, a
quantitative description of the magnetic properties of crystals
with close-to-atomic resolution may be possible. However,
the practical application of these rules is complicated by the
effects of dynamical diffraction, which introduce thickness-
dependent effects, which are normally evaluated by using
separate dynamical calculations.

In our recent work [6], we proposed to perform orbital
angular momentum (OAM) resolved scanning transmission
electron microscopy (STEM) EMCD to probe the magnetic
properties of crystalline materials that are oriented along high
symmetry directions. In this proposed experiment, both the
energy and the OAM spectra [7] of the electrons that experi-
enced a core-loss process are measured. Differences between
inelastic signals for OAM values of +/ and —/ are expected
for magnetic materials, thereby providing access to these ma-
terial properties with atomic spatial resolution.
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In the present work, we analyze the dependence of OAM-
resolved EMCD spectra on the dynamical diffraction of
electrons in a magnetic material, with reference to relevant
experimental parameters such as sample thickness and probe
convergence semiangle, on the assumption that a convergent
electron beam is focused onto an atomic column, with the
sample oriented in a high symmetry direction.

Our results show that for magnetic crystals with threefold
or fourfold rotational symmetries of zone axes it is possible to
derive relations between these dynamical coefficients. When
combined with specific experimental configurations, they pro-
vide the possibility to obtain dichroism signals that are only
weakly dependent on dynamical diffraction effects.

This behavior is clearly different from conventional
EMCD, where the dichroism signal is generally strongly de-
pendent on dynamical diffraction effects. As pointed out by
Rusz et al. [8], as a result of dynamical diffraction effects
such a signal can become zero for certain sample thicknesses
despite a nonzero magnetization of the sample, complicating
direct evaluation of the quantities m, m; directly from ex-
perimental spectra.

In practice, this situation introduces a considerable ad-
vantage when compared with conventional EMCD schemes,
since, to a large extent, OAM decomposition on the detec-
tor can be directly (i.e., nearly without additional parameter
estimation) related to single-atom OAM differential cross sec-
tions. As pointed out by Rusz er al. [5], single atom cross
sections can be interpreted directly in terms of atomic proper-
ties such as orbital and spin components of atomic magnetic
moments.
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In addition, we show how the approach described here
can be used to predict, at least qualitatively, characteristics
of dynamical coefficients that appear in OAM-resolved loss
spectra when the crystal under study does not possess these
specific symmetries.

This article is organized as follows. In Sec. II, we briefly
summarize the dependence of OAM-resolved EMCD spectra
on dynamical coefficients presented in Ref. [6]. In Sec. III,
we discuss the properties of the dynamical coefficients in-
troduced in Sec. II for crystals that have specific rotational
symmetries. In Sec. IV, we test the relations derived in Sec. III
by computing them for different materials and experimen-
tal configurations. Furthermore, we discuss how dynamical
effects can influence an experimentally-accessible dichroism
function and how they enter relations between OAM-resolved
electron energy loss spectra and mio,, 1.

II. THEORY

The experimental quantity that can be evaluated directly
through the combined action of an OAM sorter [7] and an
energy spectrometer in the TEM is the OAM-resolved loss
function Ig(¢, AE), which can be formally defined as [6,9,10]

28 28
/ I, k, AE)dk = / Tr[psPrar (k)]dk,
0

’ 2.1
where py is the density matrix of electrons inelastically scat-
tered by the sample (the subscript f indicates that this is the
final electron density matrix, i.e., at the exit surface of the
material) and Piap(k) is a projector over states |£, k, AE)
having OAM equal to /i along the z axis (the TEM optical
axis) and energy E = Ey — AE, where Ej is the energy of
the incoming electron beam.

Physically, Eq. (2.1) describes both inelastic events oc-
curring in the material and postanalysis performed by the
combined action of energy and OAM spectrometers. As
pointed out in Ref. [10], the density matrix O, represents
an incoherent sum of partial waves describing electrons that
experienced an inelastic process involving magnetic atoms
of interest in the sample. At the same time, the operator
P, o mathematically translates the action of an ideal energy-
OAM spectrometer, i.e., it projects each partial wave with
energy E = Ey — AE onto a basis of eigenstates of the or-
bital angular momentum along z and provides the weight of
the component with OAM equal to £4. The integral over k
underlines the fact that, in our setup of OAM-energy mea-
surement, information about the radial state is lost. In the
following description, we choose Bessel beams as eigenstates
of the OAM operator (i.e., |¢, k, AE)), for which the radial
quantum number k corresponds to the electron scattering wave
vector in the x-y plane, which is integrated up to the collection
semiangle 8 of the OAM spectrometer. If A is the electron de
Broglie wavelength, then Lk/2m represents scattering angle,
which is given in units of mrad below.

Assuming the validity of the dipolar approximation [6],
taking the material magnetization to be saturated along the
z axis and considering paraxial conditions for the incoming

Iy(t, AE) =

electrons, it is possible to write I(¢, k, AE) in Eq. (2.1) as

X,),2
Ik, AE) =Y " Nij(AE) Y X7(L. k)
i,j a

+ M(AE) Y Si(0. k), (2.2)

where N;;(AE) and M(AE) only depend on the electronic
properties of the material and, respectively, describe the non-
magnetic and magnetic contributions to the loss spectrum.

According to this notation, whereas the nonmagnetic part
N is a symmetrical 3 x 3 matrix, the magnetic component
M, which should be a vector, is constrained to a single z
component because of the assumed vertical magnetization.
Summations over atomic positions a are restricted to magnetic
atoms that give rise to the energy losses AE in which we are
interested. We point out here that Eq. (2.2) is only strictly valid
if the magnetic atoms of interest in the sample are symmetri-
cally equivalent to one another. Otherwise, a dependency on a
should also appear in N;;(AE) and M(AE).

The functions X,’ (¢, k) and Si(¢, k) define the effects of
dynamical diffraction of the electron beam in the sample.
They can be written in terms of other functions that are di-
rectly related to dynamical diffraction of the incoming and
outgoing beams in the crystal, i.e.,

X, k) = 10:(¢4, k;a)?, (2.32)
X7(L, k) = 2Re[Qi(¢, k;a)Q3(L, k;a)], (2.3b)
Sa(t, k) = —2Im[Q. (L, k;@)Q} (¢, k:@)],  (2.3c)

where we have defined the three-component function

0t ki) = o [ dls [ kDt e CU) Gt 40
q

24
fori, j=x,y,z,and g = [k] — k3, k| — k3, gae], while gag
is a term that depends on electron probe energy (here,
300 keV) and on the energy lost in a single inelastic event
[10]. C(k) and D(k; €, k) are, respectively, three-dimensional
(3D) Fourier transforms of the incoming beam propagating
inside the crystal and of a Bessel beam (with orbital angular
momentum 7¢ along z and transverse wave vector k) back-
propagating in the sample, i.e.,

Clk) = / dre ™" (1|0 ). (2.50)

D(k;z,k)=/dre*"k"<r|0+|¢(e,k)). (2.5b)

In these expressions, U(U™") is the evolution operator
defined in Eq. (3) of Ref. [10], which propagates (back-
propagates) the incoming wave function (the Bessel beam)
along z in the crystal. |¢inc) (|1 (£, k))) is a quantum mechan-
ical state, such that the scalar product (r [pinc) = Qinc(r1)
(ro|v(, k)) = Yu(ry;k)) corresponds to the position rep-
resentation of the wave function of the electron beam at the
entrance plane of the sample (the Bessel beam at the exit
plane of the crystal). Here, r;, = (x,y), while r = (x, y, 2).
As shown in Refs. [6,10], the back-propagating Bessel beams
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formally appear to represent the action of the OAM spectrom-
eter.

In simplified terms, Q calculates, for each magnetic atom
a, how much of the impinging probe (dynamically propagated
to the atom) is transferred to a given final state (in this case,
Bessel beam waves) back-propagated to the same atom after
dipolar inelastic scattering.

Integrating Eq. (2.2) over scattering angle Ak/2m in the
limit [0, 8], the OAM-resolved loss function can be written

X,.2

Is(t. AE) = Y N (AE) > FU(t. B)
ij a

+ M(AE) Y 8i(t. B), (2.6)
where
277[3
Ele, B) = / XU (e, kkdk, (2.7a)
0
and
%
S;(Z,ﬁ):/ S2(e, k)kdk. (2.7b)
0

We point out here that the functions F,’ and 82 [just as
for their not-integrated counterparts X, (¢, k) and S3(¢, k) ]
depend on the label a, as they represent the contribution of
each magnetic atom at position a to that dynamical coefficient.
If the index a is omitted, then we are considering a sum over
all magnetic atoms of that type in the sample, i.e., for example,
F”(zs ﬂ) = Za Fal](€$ :3)

We note here that the STEM probe is always assumed to
be centered on a specific atomic column, located at (0,0),
which contains magnetic atoms. This choice is rationalized
as follows. First, as stated by Schachinger et al. [11], inelastic
scattering localizes the scattered wave mainly on the column,
almost regardless of the initial condition. Second, it helps
that a small shift cannot induce an £ = %1 asymmetry in the
OAM decomposition of the initial probe with respect to the
origin [12] and, although still important, it does not directly
affect the dichroism. Finally, we have used simulations [6]
to demonstrate the possibility of atomically resolved EMCD.
The simulations indicated a smooth change of the EMCD
signal as a function of off-column shift.

This statement is in apparent contradiction to the large
effect of such a shift on EMCD when using a vortex probe
[13]. However, as a result of the absence of time invariance in
inelastic scattering, this situation cannot be considered to be
the inverse of the present experiment.

III. EFFECTS OF CRYSTAL SYMMETRIES
ON DYNAMICAL COEFFICIENTS

In this section, we derive analytical relations between dy-
namical coefficients appearing in Eq. (2.3) in the presence of
crystal symmetries, which can be formally represented by a

unitary symmetry operator A, such that A|r) = | Ar), where A
is a matrix associated with a symmetry operation in real space.
If we assume that the crystal is invariant under this symmetry

operation, then [\7, A] = 0 (where V is the crystal potential),
so [U,A] = [U™", A] = 0. Focusing on the matrix element in
Eq. (2.5b) we can write

(rl0* [y (e, k) = (rlA* U+ A1y (L, k)

= <Zr|l7+ / erA|rL><rL|w(e,k)>,

where A r1) = IZ ary), A | is the matrix obtained from A by
removing the row and the column associated with z.

The symmetry operators that are considered in the present
work always satisfy the relation

—1 .
(AL rily L k) =" (rily(pt, k), (3.1
where p = =1 and y, is a real number that depends on the

Bessel beam OAM index £.
Therefore, we can write

(rO* 1Y (L. k) = e (Arl0F [y (pL. k).

As the incident beam is a standard beam, which is assumed
not to have aberrations, its OAM decomposition can be as-
sumed to be composed only of the £ = 0 component.

In this case, it can be stated immediately that

(3.2)

10 1¢ine) = (ATI0|binc)- (3.3)
By making use of Egs. (3.1) and (3.2), Egs. (2.5) can be
rewritten in the form
Cl) = f dre= T (4110 i) = / dr AR (06,
(3.4a)

D(k) = / dre * (A r|0F |y (pe, k)

= i / dr' e AR 0 g (e, k), (3.4b)

from which it is possible to infer that C(k) = C (X k) and

D(k; £,k) = ¢"D(Ak; pt, k).
Equation (2.4) can then be rewritten in the form

Qi(ﬁ,k;a)z ofdklfdkgef’WD*(Xkl; pZ,k)
= gi itk\—k»)-a
xC(Akg)ge .

By making the variable substitution k| , = Ak 1.2, and by
making use of the fact that (k; —ky)-a=A"'(k'y — k') -
a = (Aa) - (k' — k'»), it is possible to write

0. k:a) = e "[A”'Q(pt. k:A@)], (3.5
where Q(¢, k;a) =[O (L, k;a), Oy (£, k;a), Q;(¢, k;a)] and
Ao is a matrix obtained from A by setting ;1(3,3) =1 and
2(3,,‘) 22(5,3) =0, fori=1,2, as ¢, is fixed to gag. In this
way, it is possible to relate the quantities Q;(¢, k;a), for a
given specific symmetry A that satisfies Eq. (3.1).

We will now use Eq. (3.5) to understand the properties of
the dynamical coefficients under rotational symmetries.
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A. Rotational symmetry around an atomic column

We begin by considering a crystal that is invariant under
rotation by an angle o € {%, ZT”, 7t} around an atomic column
located at (0,0) in the x-y plane, on which an electron probe
is focused. These cases correspond to fourfold, threefold, and

twofold rotational symmetries.
In this case, A = A, corresponds to a matrix associated

with a rotation along z, so that A = A,. Following rotation by
an angle « around z,

(AL P LW, k) = Te(klr )™ = e (e, [y (e, k),

where ¢’ = ¢ — « is the transformed azimuthal angle. For
these transformations, we find p = 1 and y, = —fa.

Equation (3.5) can be used to obtain relations between the
coefficients Q;(¢, k;a), fori = x, y, z. We first discuss the case
of a belonging to column (0,0). We then focus on the case of
a belonging to a different atomic column. We highlight the
fact that, when the dynamical coefficients Q; are considered
for atoms on the (0,0) column, this means that we are taking
into account the contribution to the loss signal due to atoms
on that column. However, dynamical diffraction of both the
incoming beam and the back-propagating vortices from all of
the (magnetic and nonmagnetic) atoms in the sample is fully
taken into account.

As a magnetic atom on the column transforms into itself
under such a rotation, in this case Aa= a, where a cor-
responds to (0,0, a;). We therefore find that Q(¢, k;a;) =

o
¢“lAo QU k;ay)].
By reversing this equation, we find (for « # ) that

la o3
0l kia) = ——% o (0 ka), (3.6a)
1 — et cosa
0., kya,) = *Q.(L, k;a). (3.6b)

Starting from Eq. (3.6b) for ¢ = +1, we note that
0., k;a;) is nonzero only if (1 — e*®) = 0, which is not
possible for the angles considered here. Therefore, the terms
X6 = %1, k) are zero, exactly as the cross terms evaluated
for j =z, i.e., X2(¢ = x1,k) = 0.

At the same time, according to Eq. (3.6a),
X' ==x1,k) =X, (t = £1,k), for a € {z 27”}, while
from

o o3

e Sin o

[0:(L, kya) Oy (¢, k;a)] = I 10,(¢, k; a)I?,

— el cosa
we immediately find that X;” (¢ = 1, k) = 0 together with
S¢ (6 ==+1,k) = —2£X;” (£ = £1, k), simply using the defi-
nitions provided in Eq. (2.3) and finding that the right side of
the above expression is imaginary because lfjm% = &i for
bothe = 5 and o = 2?”

Therefore, for rotation angles o € {%, 2?”}, contributions to
the dynamical coefficients X*/ and S¢ from atoms (0, 0, a,) are
either zero or they can be expressed in terms of X*” (or X*").

These results are summarized for convenience as follows:
Xaxzx(g =41,k) = Xayzy(g = =+1,k), (3.7a)

Xi(t=%1,k)=0 fori=ux,y, (3.7¢)
X2 =%1,k) =0, (3.7d)
Si(b==1,k) = 26Xt = +1,k).  (37¢)

For ¢ = 7, Eq. (3.6a) is not valid. Therefore, it is not pos-
sible to generally obtain a relation between Q. (¢, k;a;) and
Oy, k;a;). Consequently, relations similar to Eqs. (3.7a),
(3.7d), and (3.7e) cannot be obtained for this specific rotation
angle, whereas Egs. (3.7b) and (3.7c¢) are still valid.

We now describe how magnetic atoms outside the (0,0)
column contribute to the dynamical coefficients that appear
in OAM-resolved loss spectra. We focus on 27”—rotational
invariant crystals. In Appendix A, we present an analogous
reasoning for the other rotational symmetries considered here.

In such a crystalline system, for a magnetic atom in po-
sition @y out away from the (0,0) column, there will be two
other atoms of the same type (whose positions are defined in

the following as @; and a,), such thata; = Kao, a, = ;\al and

ay=Aa.
By using Eq. (3.5), we can write

Q. kia)) = 5[A7'Q k:Aa)] =T [A7' Q. k;ay)]
=T ATIATIQ, ks ap)],

QL. k;ay) = T [A7' QU k; Aay)] =T [A7'Q(L, k; ap)].
(3.8b)

(3.82)

In this way, we can write the functions Q for these atoms
in terms of their values computed for only one of them, here
chosen to be ag.

Equation (3.8) can be used to compute the sum of the con-
tributions of these atoms to the various dynamical coefficients,
ie.,

3
Y 10 k)P =Sl10:L ki ao)P+1Q,(¢ ki ao)I’]

aelap,a1,a>}

= > oW kal, (3.92)
aclap,a;.a}

2Re|: 3 Qx(ﬁ,k;a)Qy*(Z,k;a)]=0, (3.9b)
aclag,a;.ax}

—ZIm[ Z Qx(ﬂ,k;a)Qy*(Z,k;a)}
aclag,a;.a}

= —6Im[Q. (¢, k;a0)Q,* (¢, k; ap)], (3.9¢)
Y 0t ka)Q (L kia)=0, i=x.y,  (3.9d)

aclap,a,.,a}

> 10t k) = 3|0.(¢. kiap)*. (3.9¢)

aelap,a1,a>}

Equation (3.9a) indicates that Y  X*(£, k)=

> . Xa' (€, k): this is because the magnetic atoms within
the (0,0) column provide the same contributions to X and
XY, while the sum of the contributions to X** and X from
atoms outside the column connected by rotations of 27” are
the same.
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Second, all of the cross terms are exactly zero. As pointed
out above, atoms (0, 0, a,) do not contribute to X/, while
terms coming from the remaining atoms sum to zero, i.e., their
contributions mutually compensate, according to Egs. (3.9b)
and (3.9d). Furthermore, Eq. (3.9¢) indicates that the total
X% is expected to be nonzero because of contributions from
out-of-column atoms.

Finally, from Eq. (3.9¢) it is possible to realize that atoms
on columns different from that at (0,0) sum their contributions
to S%, which, therefore, has both on-column and out-of-
column terms.

As outlined in Appendix A, analogous conclusions can be
drawn for o = % (apart differences in numerical constants),
whereas for o« = 7 it is only possible to predict a cancellation
of contributions from atoms that are oppositely positioned
with respect to the center, to the cross terms X, for i # z.

We note that the results obtained in this section are inde-
pendent of experimentally tunable parameters, such as STEM
probe convergence semiangle, OAM spectrometer collection
semiangle, and probe channeling properties along an atomic
column, as they are derived only on the basis of symmetry
considerations. We will show in Sec. V how an appropriate
choice of experimental configuration can be used to provide
further simplifications of the results derived here.

B. Relation between £ = +1 dynamical diffraction coefficients

We briefly recall a result already presented in Ref. [6], with
regard to the possibility of establishing equalities between the
moduli of dynamical diffraction coefficients computed for £ =
=+1 in the presence of invariance under mirror plane reflection.

More precisely, when a crystal is invariant under mir-
ror reflection with respect to a plane containing the
TEM optical axis, i.e.,(x,y,z) = (—x,y,z) or (x,y,2) —
(x, —y,2), we can apply Eq. (3.5) by taking y, =0 and
p= —1 to find a connection between the functions Q;
computed for £ = +1 and £ = —1. Straightforward calcu-
lations demonstrate that Y, X/ '(¢, k) = >, X (—€, k) (i =
X0 2)s 2o Sl k) =—3,Si—L, k) and Y, X, (€, k) =
=Y X (=, k).

These findings are only determined by symmetry consider-
ations and will be useful in the next sections, when we sum
and subtract OAM-resolved EMCD spectra to compute the
relative dichroism function.

IV. NUMERICAL CALCULATION OF DYNAMICAL
DIFFRACTION COEFFICIENTS
IN CRYSTALS WITH ROTATIONAL SYMMETRIES

In this section, we present calculations of dynamical
diffraction coefficients discussed in Sec. III for three cases:
[001] hep cobalt, which is <- 3  _rotationally invariant; [001] iron
platinum, which has Z-rotational symmetry; [110] bcc iron,
which has only a twofold rotational axis parallel to the TEM
optical axis. The calculations are performed using a modified
version of MATS.v2 code [14].

We start from [001] hep cobalt. We perform calculations
for different convergence semiangles of the STEM probe
and for two different sample thicknesses of 20 and 40 nm.

These values are chosen because, in conventional EMCD, the

dichroism signal is expected to decrease by ~80% on going
from a 20-nm-thick to a 40-nm-thick Co crystal. (See Fig. 6
in Ref. [8]). As we discuss in Sec. IV A, for OAM-resolved
EMCD the changes in this signal are much smaller with sam-
ple thickness.

Figures 1(a) and 1(b) show the quantities X**(1, ) and
X (1, n) plotted as a function of scattering angle n = Ak/2xw
(where k is the Bessel transverse wave vector) for convergence
semiangles (0) of 10, 16, and 22 mrad for sample thicknesses
of 20 and 40 nm. We notice that, independent of 6, the two
dynamical coefficients numerically coincide for each value of
the scattering angle 7, in agreement with the results found
in Sec. III. Therefore, in integrated OAM-resolved EMCD
spectra it is possible to fix F**(1, 8) = F*(1, ) in an exact
way. -

Figures 1(c) and 1(d) show the ratios ,fwill,’?)) computed
for different values of 6 for sample thicknesses of 20 and
40 nm, respectively. These ratios depend on the parameter 6.
Specifically, for 6 = 16 mrad this quantity is smaller than for
6 = 10 mrad and 6 = 19 mrad. In order to further investigate
this trend with 0, the insets show averages of the ratios for
B €[5, 20] mrad, where these quantities are approximately
constant w.r.t. the collection semiangle. For both thicknesses,
the averages have minima at 6 = 16 mrad, whereas they
increase rapidly for smaller values of 8. At the same time, a
small increase is observed for larger values of the convergence
semiangle.

This behavior can be rationalized by the fact that a 16 mrad
probe channels better along the atomic column on which it is
located when compared with other beams. As the probability
of an inelastic event at a particular atom is proportional to
the probe current density at that point, the number of ex-
citations that take place on columns different from that at
(0,0) will be small, as will be the value of F%*, which is
only derived from inelastic events occurring at these atoms.
Quantitatively, separate multislice calculations (not shown
here) indicate that for a convergence semiangle of 16 mrad the
probe current density on the (0,0) column is almost two orders
of magnitude greater than that on a neighboring column, in
agreement with the average value of ﬁuill g) for this value of
0, which is ~0.017 (0.022) for the 20 nm (40 nm) sample
thickness.

These results suggest that, by using probes that show strong
channeling along the (0,0) atomic column, it is possible to
neglect ¥ with respect to F**. This assumption is reasonable
only if an appropriate probe is chosen. For a probe of 7 mrad,
on average F'¥*(1, B) can reach values of ~10% of F**(1, B)
for certain values of 8. Therefore, neglecting this term in an
OAM-resolved loss spectrum is a rather poor aEpr0x1mat10n

. . R FY(1,8)
ny(ljl?)ures 1(e) and 1(f) show the ratios A Fp) and

Fop) evaluated for 0 = 16 mrad. These ratios also have
the same trends when they are computed for different values
of 6, i.e., they are equal to zero within numerical accuracy
(this result is further highlighted in the insets, which show
averages of these quantities for the interval g € [5, 20] mrad
for the different probes, of on average below 0.002). These
results agree with the predictions outlined in Sec. III that
the cross terms are zero, as they have no contributions from
the (0,0) atoms, while the terms from neighboring columns
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FIG. 1. Dynamical diffraction coefficients computed for hcp [001] cobalt samples of thickness (a),(c),(e) 20 nm and (b),(d),(f) 40 nm. (a)
and (b) show the functions X** and X* as a function of scattering angle evaluated for £ = 1 and for STEM probe convergence semiangles of
10, 16, and 22 mrad. The results for 16 and 22 mrad are shifted upward in intensity to improve readability. (c) and (d) show the ratios F*/F**
for different probes (the y axis is on a log scale). The insets show averages of these ratios for collection semiangles 8 € [5,20] mrad for STEM
convergence semiangles in the interval [7,22] mrad. (e) and (f) show the ratios F*/F*, F**/F** and F**/F* for a probe of 16 mrad. The
insets show their averages for collection semiangles 8 € [5,20] mrad for the same convergence semiangle as in (c) and (d).

cancel with each other. These compensating effects are Similar results can be obtained for a crystal that has
further clarified in Appendix B, which shows the contributions Z-rotational symmetry, as observed for iron platinum. Fig-
of these cross-terms of each nearest neighboring column to ures 2(a)-2(f) show the same quantities as for hcp cobalt, from

that at (0,0).
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FIG. 2. As for Fig. 1, but for an [001] FePt crystal for sample thicknesses of (a),(c),(e) 20 nm and (b),(d),(f) 40 nm.

which we can immediately draw the same conclusions as for atoms, while Fe atoms are on further columns, where the

the previous case.

probe current density is expected to be much smaller for a

__As an additional comment, we note that for FePt the ratios well-channeling probe.
FLUB) are generally smaller than those for hcp cobalt (also As a final example, we consider [110] bcc iron, which is

F(1,8)

below 0.01) for the same values of 6, as columns nearest invariant only under a m rotation along an atomic column.
to that on which the probe is located are only made of Pt ~ Figures 3(a)-3(d) show dynamical coefficients computed for
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FIG. 3. Dynamical diffraction coefficients calculated for a convergence semiangle of 16 mrad for bcc Fe oriented along the [110] direction
for sample thicknesses of 20 nm and 40 nm. (a) shows the quantities X** and X*” which are shown as a function of scattering angle for £ = 1.
The data for a 40-nm-thick crystal are shifted rigidly upwards to make the figure more readable. (b) shows the ratio F*/F** evaluated for
the two sample thicknesses (again for £ = 1) as a function of collection semiangle B. (c) shows ratios between the cross terms F“ and F**.

(d) shows the ratio F*¥/F** for the two sample thicknesses.

sample thicknesses of 20 and 40 nm. In order to simplify the
treatment, we present calculations only for a well-channeling
probe of 16 mrad.

Figure 3(a) reveals different trends for X**(1,7n) and
X*(1, n), which also change with sample thickness. Figure
3(b) shows the ratios %, which are again small [F%(1, B)
can be reduced to about 1-2% F**(1, 8)], as for w-rotational
invariance the only contributions to F%* come from magnetic
atoms on columns neighboring that at (0,0), again justifying
the nonzero value. For probes with smaller values of 6, we
observe a larger ratio as the current density on the neighboring
columns is greater, as in the two previous cases.

Figure 3(c) shows the ratios g - EULp)

Xy F(1,p)7 F¥(1.8)’
Fig. 3(d) shows ?E}g; The first two terms are zero for the

reasons described above for cobalt and iron platinum, while

?iﬁg; is now nonzero. The relations between Q, (¢, k;a) and

Oy(€, k;a) in presence of this rotational symmetry depend
strongly on crystal anisotropy in the x and y directions, which

is specific to each system. In contrast to the specific situ-

ation for 7 and %” rotational symmetry, it is not possible

while

to generally describe the effects of dynamical diffraction in
dichroic spectra. Instead, careful numerical analysis has to
be performed for each m-invariant system under study. Nev-
ertheless, in Sec. I of the Supplementary Material [15] we
discuss selected examples from this category, in order to show
how it is possible to use the reasoning outlined in this work
to predict, at least qualitatively, features of the dynamical
diffraction coefficients in 7 rotationally invariant systems.

A. OAM-resolved dichroic spectra for 7 and %” rotationally
symmetric crystals

Based on the analytical results obtained in Sec. III and
on the numerical simulations in Sec. IV, we can derive a
simplified form for OAM-resolved loss spectra for £ = £1,

in case of crystals that are invariant under a rotation of % or

2?” around an atomic column. We can then write

Ig(€ = £1, AE) ~ [Ny (AE) 4+ Ny (AE)IF¥ (€ = £1, B)
+M(AE)S (£ = +1, B). (4.1)
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FIG. 4. Ratios §°/F* computed for £ = 1 and for a probe convergence semiangle of 16 mrad for (a) [001] cobalt and (b) [001] FePt.

We recall here that the relations F*™(€ = =+1,8)=
FY( =%1,8), Fi(==%1,8)=0 (for i=x,y) and
F?( ==+£1, B) =0 are valid for symmetry reasons, inde-
pendent of the probe characteristics, whereas the assumption
F¥(€ = +£1, B) =~ 0 is valid only if the STEM probe strongly
channels along the atomic column on which it is focused.

For a sample that is mirror-symmetric w.r.t. the x-z or
y-z planes, in Sec. III B we derived the relations F*(¢, ) =
F¥*(—£, B), together with §(¢, B) = —8%(—¢, B). The rela-
tive dichroism function defined in Ref. [6] is then given by the
expression

Iy(1, AE) — Iy(—1, AE)

D(B, AE) =
Ig(1, AE) + Ig(—1, AE)
LB M(AE) @2
F=(1, B) [Nu(AE) + Ny (AE)"
which depends on dynamical diffraction only through Ifxf(llfj;),
whereas the ratio m is determined solely by the
magnetic properties of the sample.
Figure 4(a) shows FS((II’?) for an [001] hcp cobalt crys-

tal of thickness 20 and 40 nm for a convergence semiangle
of 16 mrad and for collection semiangles 8 € [6, 20] mrad,
which are accessible experimentally using presently-available
OAM spectrometers [7]. Figure 4(b) shows the same quan-
tities evaluated for 20-nm-thick and 40-nm-thick [001] FePt
samples.

In both cases, the ratios vary slowly as a functions of 8 and
are close to -2. For a 20-nm-thick Co sample, the ratio takes
values between —1.88 and —1.94, while for a 40-nm-thick
sample it takes values between —1.82 and —1.93. Therefore,
the difference from the limiting value of —2 is 3—6% for the
20-nm-thick sample and 4-9% for the 40-nm-thick sample,
with a weak dependence on collection semiangle .

For FePt, the ratio is much closer to —2 for both thick-
nesses, varying between —1.98 and —1.99, with that for the
40-nm-thick crystal being slightly larger than that for the
20-nm-thick crystal.

This limiting value was effectively predicted in Sec. III,
after demonstrating analytically that §7(1, B) is expected to
be twice F**(1, B), if only contributions from magnetic atoms

on the (0,0) column are taken into account. The discrepancy

from this value is due to atoms on neighboring columns.

) . (LB 5'6(1,,3)+ §§,5~(1»ﬂ)
More precisely, we can write FROLB) = Foo(Lp)t Fone(LB)’

where the subscript “NC” refers to contributions from
columns (containing magnetic atoms) different from that
at (0,0), whereas “0” refers to terms deriving from atoms
on the (0,0) column. With reference to the trends ob-
served for F;(l” 7> We expect that for a strongly chan-
neling beam |S'8(1, B > |S‘IZ\,C(1, B)| and F*y(1, 8) >

S51.) o,
FE(1LB)

F*ne(1, B) and we can Taylor expand the ratio as

S5(1.8) 1+ §&C(l,ﬁ) _ Fne(1,8)
Foo(1.8) S8 Fo(LA)
in the square brackets, which are expected to be much smaller
than unity, represent terms coming from neighboring columns
and are responsible for the discrepancy from the expected

value of —2 given by the ratio Ff‘jitlﬁ ;). The stronger is the

channeling, the smaller in modulus are the values of the “NC”
terms and the closer to —2 is this ratio. This is the reason why
such a ratio is expected to be on average closer to —2 for FePt
than for hcp cobalt. For an appropriate choice of collection
angle B, this error can be reduced to below 5% for both of the
considered sample thicknesses. We now investigate how the
dichroism strength changes on varying the sample thickness
in these two cases.

As an example, we fix a reasonable value of B, e.g.,

12 mrad, and calculate If((llﬂﬂ)) for different sample thick-

nesses. We find that for cobalt the ratio changes from —1.92
to —1.89 from a 20 nm to a 40 nm sample, with an associated
decrease in relative dichroism signal of less than 2%. For FePt,
this variation is much smaller (below 1%).

The relative dichroism function that is accessible us-
ing OAM-resolved EMCD for samples with these rotational
symmetries is therefore only very weakly dependent on
dynamical diffraction, in contrast to the situation for conven-
tional EMCD. For comparison, we underline here that the
fact that calculations performed by Rusz ef al. [8] predict a
variation in dichroism for hcp cobalt of ~80% on changing
the sample thickness from 20 to 40 nm.

The physical reason for this difference is that, for the

present experimental setup, the term stf(ll’?)

mainly by the inelastic signal from the magnetic atoms in the

]. The second and third terms

is determined
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column on which the probe is located, which is thickness-
independent and is determined only by symmetry for 7 and

ZT” rotationally invariant crystals.

Changes from these limiting values are thickness-
dependent, but are generally a small fraction of the value
determined by the atoms at (0,0).We have shown that their
strengths are determined by inelastic excitations occurring on
neighboring columns. They can therefore be controlled by
using a STEM probe that exhibits strong channeling along
the atomic column on which the probe is located, suggesting
a possible way to further reduce this discrepancy by smart
engineering of the channeling properties of the incoming elec-
tron beam. As pointed out in Ref. [16], the use of a Gaussian
beam with a transverse size comparable to the 1s Bloch state
associated with the atomic column on which this probe is
focused could strongly enhance the channeling capability of
the beam, thereby reducing the number of inelastic excitations
occurring on neighboring columns, which are responsible for
the observed discrepancies.

In Appendix C, we demonstrate that, for these systems,
the orbital and spin components of the atomic magnetic mo-

ments can be written as gy = Corb(m)’1 and my; =

. FE(1LB)
Cy( If((l l’f?))’l, where Co, and Cy depend on experimentally

accessible spectra and material-specific terms. [Their ex-
tended expressions are provided in Egs. (C14) and (C15).]

As we have demonstrated that ( gif(lf?))‘l is only slightly
dependent on 8, an approximate evaluation of mqy, and mg can
be obtained directly from experimentally measured spectra
by approximating ( gjf(ll’fg))" by the limiting value of —0.5,
assuming a probe that exhibits good channeling properties.
An estimate of the error associated with this approximation
requires dynamical diffraction calculations similar to those
reported in this work. However, we expect the error to be
within experimental uncertainty if an appropriate choice of 8
is made.

V. CONCLUSIONS

In this work, we have provided relations between dy-
namical coefficients appearing in STEM OAM-resolved
energy-loss spectra, for a convergent electron beam that is
focused on an atomic column that is a rotational symmetry
axis for the crystal. Some of the relations are valid in a general
context and depend only on the zone axis symmetry of the
crystal, while some of them require strong channeling of the
probe on an atomic column.

We have also shown that, for the present cases and exper-
imental conditions, the dichroism spectrum that is accessible
using this technique is only slightly dependent on dynamical
diffraction effects and is therefore almost independent of sam-
ple thickness. This is a great advantage when compared with
the original setup proposed for electron energy-loss magnetic
chiral dichroism. It could open the way to the reliable determi-
nation of the orbital and spin components of atomic magnetic
moments directly from experimental spectra.

ACKNOWLEDGMENTS

This work is supported by Q-SORT, a project funded by
the 484 European Union’s Horizon 2020 Research and In-

novation 485 Program under Grant agreement No. 766970.
This project has received funding from the European Re-
search Council (ERC) under the European Union’s Horizon
2020 research and innovation programme (Grant No. 856538,
project “3D MAGIC”), from the European Union’s Hori-
zon 2020 Research and Innovation Programme (Grant No.
823717, project “ESTEEM3”), from the DARPA TEE pro-
gram through Grant MIPR No. HR0011831554 and from the
Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation), Project ID No. 405553726 - TRR 270. E.K.
acknowledges the support of Canada Research Chair (CRC),
and Early Research Award (ERA).

APPENDIX A: CONTRIBUTIONS TO DYNAMICAL

COEFFICIENTS DUE TO ATOMS NOT ON THE (0,0)

COLUMN: THE CASE OF 7 AND = ROTATIONALLY
INVARIANT CRYSTALS

We start from the case of & rotationally invariant crystals.
In this case, given an atom ay out of away from the (0,0)

column, we have another atom a; = A a,, where A describes
a 7 rotation around the z axis. If we use Eq. (3.5), we have

o= -1 =
QW k;a) = ¢“"[Ay QU k;Aay)]
— (A0 Q. kiAAap)]
. = —1
=e7A) QU k;ap)],

where the relation A A = 1, which is valid for 7 matrix rota-
tion, is used. For £ = +1, we obtain

0., k;a)) = O (L, k; aop),
Oy, k;ay) = O,(¢, k; ag),

Q:(L, kiar) = —Q:(L, k; ap).

We can now compute the sum of the contributions to
the different dynamical coefficients of these two equivalent
atoms, i.e.,

Yoot k)l =210 kag)’, (Al
(20,:1} 0, k:@)? = 2|0, (L. k:ap)l,  (A2)
{il} 10.(¢, k;@))* = 210:(¢, k;ap)l,  (A3)

> Qx(z{,:;lc}z)g*y(e, ka) = 20.(¢, k;a0)Q* (€, k:ap),
acfap,a,)} (A4)
Y 0t ka)Q* (€ k;a) = 0. (A5)

aclag.a}

From Egs. (Al) and (A2), the contributions to X and
XY are different, as O, (¢, k;ap) is in general different from
0y, k;ap), while Eq. (A3) indicates that, as for 27” rotation-
ally invariant systems, the terms associated with X%, which
are obtained from equivalent atoms, sum together in phase.
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The same situation occurs for the summation in Eq. (A4),
which represents contributions to the functions X and S*. [In
order to obtain these functions, it is necessary to extract the
real and imaginary parts of Eq. (A4).] Equation (A5) indicates
that for i = x, y, the contributions of these equivalent atoms
to the cross terms X** and X’ exactly cancel out. This means
that 7 rotational symmetry around z guarantees that F** and
FY* are zero, whereas F* is expected to be different from
zero, but its value is only determined by contributions from
magnetic atoms on columns that are different from that at
(0,0).

We now focus our attention to the case of 7 rotationally
invariant systems. In these crystals, there are four equivalent
atoms, which can be related to each other through % rotations

around the z axis, i.e.,@p,a; = Aag,a, = Aa; andas = Aay,

with @ = A a.
Exploiting Eq. (3.5), we obtain

QU k;ar) = 3[40 QU k;Aa))] = 3[40 QL k;ar)]
= e"Z”[Zo_IZO_lQ(E, k;Zaz)]
= eie”;;]X:Q(ﬂ, k;a3)
= e’[}?ﬁZ:Z:Z;]Q(ﬂ, k;ap),

0. k) = €3[4y QL. k:Aa)]

o = -1 2 =—l=—1
= 'TA QU kiaz)] = " Ay Ay QL. k;ap)

cw = —1 = a=—1
QU kia3) = €2 [Ag QU k;Aaz)] = €2 A, QU k;ap),

i.e., we can write the functions Q(¢, k;a) for all four equiva-
lent atoms in terms of those evaluated for only one of them.
By using these relations, we can compute the sum of the
contributions to the dynamical coefficients for these atoms,
ie.,

Z 10:(€, k;a)* = 2|10:(€, k;ao)|* 4210, (£, ks ao)|*,
aclap,a,az,a3}

(A6)

D 10 ks a)P = 2108, k;a0)*+210,(€, k;ao) P,

acfag,a;,az,a3}

(A7)
D10t k@) =40:(¢ ka0’ (AB)
acfap,ay,az,a3}
> 0t ka0 (¢, kia)
aclap,a1,a,a3}
= 4ilm[Q. (¢, k; a0)Q*, (L, k;a0)], (A9)

> 0t ka)Q* (L k;a) =0 fori=xy. (AlO)

aefap,a;,az,a3}

Equations (A6) and (A7) show that the contributions X**
and X°Y due to these equivalent atoms are the same. Therefore,
we have F** = FY for £ = 1. As in the two previous cases,
the contributions to X* due to the equivalent atoms sum in

FIG. 5. hcp cobalt viewed along the [001] direction. Columns
denoted ¢y, ¢,, c3 are formed from atoms that can be obtained from
each other through rotations of 277 /3 around the column denoted ¢,
where the STEM probe is located.

phase [see Eq. (A8)], while Eq. (A9) indicates that the sum of
the terms O, (¢, k;a)Q* (¢, k;a) has no real part, so that we
have X* = 0. However, the imaginary parts sum in phase and
S0 a nonzero contribution to S° due to the atoms not on (0,0)
is expected.

Finally, Eq. (A10) shows that the cross terms X** and X*
are zero because contributions from the atoms on columns
different from that at (0,0) sum destructively.

APPENDIX B: CONTRIBUTIONS TO DYNAMICAL
COEFFICIENTS FROM MAGNETIC ATOMS
ON COLUMNS THAT ARE NEAREST NEIGHBORS
TO THAT AT (0,0) FOR %" ROTATIONALLY
INVARIANT CRYSTALS: [001] HCP COBALT

In this section, we demonstrate Eq. (3.9) derived in the
main text, focusing on contributions to the different dynamical
coefficients due to equivalent atoms on nearest neighboring
columns to that at (0,0) on which the probe is located, for
[001] hcp cobalt.

More precisely, we display the quantities

#
Flie=1,8)= / X =1, k)kdk (B1)
0

for atoms a on three nearest neighboring columns indicated
in Fig. 5 as ¢y, ¢y, ¢3. The results are presented for these
equivalent atoms (which can be obtained from each other
through 2?” rotations) and can be extended to further columns
once equivalent atoms are taken into account. Column ¢y in

Fig. 5 corresponds to that on which the probe is focused.

In the following, the collection semiangle 8 will be kept
fixed to a reasonable value of 11 mrad and we focus on a
cobalt sample with a thickness of 20 nm.

Figure 6 shows the quantities defined in Eq. (B1) for a
probe with a convergence semiangle of 7 mrad. We note here
that Eqs (3.9) (just as those found in Appendix A) are indepen-
dent of the probe convergence semiangle. We show in Fig. 7
how these dynamical coefficients computed for atoms not on
(0,0) change by increasing the probe convergence semiangle,
i.e., by adopting a probe with stronger channeling properties.
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FIG. 6. Contributions to the dynamical coefficients F/ and §¢ due to the atoms of the three columns indicated in Fig. 5. The calculations
have been performed for a 20-nm-thick cobalt crystal, assuming convergence semiangle of 7 mrad and integrating the final signal up to a

collection semiangle of 11 mrad.

Figures 6(a) and 6(b) show the functions F;** (¢ = 1, §) and
F;” (€ = 1, B), respectively, for atoms a along columns ¢y, ¢,
c3 indicated in Fig. 5. On both graphs, we also show the sum
of the contributions to F** and F”Y. We notice that, despite
the fact that the contributions to F** and F”” from atoms on
different columns are different, the sums F* and

acf{cy,c2,c3} " a
»y
> ae{cl,cz,C3}I;;l are the same.

Figures 6(c) and 6(d) show the functions F;” (¢ = 1, B)
and F;*(¢ =1, B), respectively, together with the sums
Y actercreny Fao and D0 F% Just as predicted by
Egs. (3.9b) and (3.9d), the contributions to these functions
from rotationally equivalent atoms cancel each other out.

Finally, Figs. 6(e) and 6(f) show Y F% = 3F%

ac{c),c2,c3} " a acc;
7 — 4
and Zae{cmm Si = 38,
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FIG. 7. (a) Ratios between contributions from columns c; ¢, and c; and the ¢y column to F** are shown for two different convergence
semiangles of the STEM probe. (b) Contributions of the neighboring columns to F# are compared with F** associated with the (0,0) column.
The subscript “NC” refers to neighboring columns, while the subscript “0” refers to the (0,0) column on which the probe is focused. (c) and
(d) show Eq. (3.7a), (3.7b), (3.7d) and (3.7¢) in the main text tested for convergence semiangles of 7 and 14 mrad.

In order to complete the analysis of the contributions from

atoms on neighboring columns, Figs. 7(a) and 7(b) show the

Daciej.cre) Fa Laclej.cpez) Fa-

ratios "E(I‘;r% e e },—63 )3) -
(

of 7 and 14 mrad An increase in the probe convergence
semiangle decreases these ratios, as for the second probe the
incoming electron beam exhibits stronger channeling along
the atomic column on which it is focused, so the number of in-
elastic events occurring on columns cy, ¢; and c3 is decreased
and correspondingly also Z y Fg* and Z FZ

ac{cy,c2,c3) " a

computed for STEM probes

ac L[ C2, L}

decrease. Finally in Fig. 7(c) we show the functions I;n and

F"Z, while in Fig. 7(d) we show F" and f." computed, in
both cases for atoms a on the 0,0) ‘column for two different
convergence semiangles. Relations between the dynamical
coefficients computed for atoms at (0,0) are effectively inde-

pendent from the probe convergence semiangle.

APPENDIX C: CONNECTION BETWEEN
OAM-RESOLVED EMCD SPECTRA AND m1,, my

In this section, we derive an expression that connects #y,
my with measured OAM-resolved loss spectra for cases when
Eqg. (4.1) in the main text provides a good approximation for

OAM-resolved loss spectra. The sample is always assumed to
be fully polarized along the z axis.

As afirst point, we need to find a relation between M (AE),
N;;(AE) (integrated over the atomic edges L, and L3) and the
orbital and spin components of the atomic magnetic moment,
starting from the equations provided in Ref. [5]. The main
steps that are necessary to find these relations are as follows.

We define

M(Ly: L) = M(AE)AE, 1
Ly+Ls
ML) = | M(AE)AE, (€2)
Ly
M(L3) = M(AE)dAE, (C3)
Ly

e., the integral over the edges L, and L3 of the energy-
dependent imaginary part of the mixed dynamic form factor.
Starting from Eq. (4) in Ref. [5], we have the expression

1 9G
M(Ly; L3) = 57—~ Morb,

(C4H
2 2L+ g
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where the orbital component of the atomic magnetic moment
is given by mo, = wup(L), and (L), is the expectation value
of the atomic OAM along the z axis. This is correct only if
the sample is fully magnetized along z. G is a positive quan-

J

tity, which depends only on the material electronic properties
and can be computed applying the dipolar approximation to
Eq. (5) of Ref. [5]. The index L is equal to 2 for 3d transition
metal atoms.

At the same time, we can exploit Eq. (6) of Ref. [5] to evaluate the integral of M (AE) over the two distinct atomic edges, i.e.,

M(L,) and M (L3). In practice,

B 9G L—1 (S).(L—DL [  2L+3(T),
M) = Grhoers 1)[ 7 - 3 <1 I (S>Z>:|’ ©
B 9G L (S).(L— L[ 2L+3(T),
GV TS 1>[5<L>Z+ 3 (1 L <S>Z)}’ 0

(1),

where (S), is the expectation value of the atomic spin along the z axis. As pointed out by Chen et al. [17], the ratio &= is
generally negligible for bulk systems, so we neglect this quantity below. Exploiting Eq. (C5) and Eq. (C6), we write

1 1
ZM(L3) - mM(Lz) =

(8):

3G

L™ 7

Finally, by using Eq. (8) of Ref. [5], which provides a sum rule for the real part of the mixed dynamic form factor, it is
possible to obtain an expression for the integral of N;;(AE) over the two edge in the form

/ Ni(AE)AE =
Lry+Ls

QL-1)@2L+1)

9L°G
D;;, (C8)

where D;; (for i = x, y) are quantities that are again only dependent on the electronic properties of the material, which can be

evaluated using ab initio calculations.

We now use Eq. (4.1) from the main text for the OAM loss spectrum, with the additional assumption that the crystal under
study has a mirror plane containing the z axis. In this case, we can write

Ig(0 =41, AE) + Iz({ = —1, AE) = 2[Nw(AE) + Ny, (AE)IF¥ (€ = +1, B), (C9)
Ig(£ = +1, AE) — Iz(¢ = —1, AE) = 2M(AE)S*(£ = +1, B), (C10)
and for the corresponding quantities integrated over the atomic edges we have
A(Ly; Lz) = / Ug(£ =+1, AE) +13(£ = —1, AE)IdAE, (C11)
Lry+Ls

A(L) = [Ig(£ =41, AE) — Ig(£ = —1, AE)]dAE, (C12)

L
A(Lz) = / [Ig(£ =41, AE) —Ig(£ = —1, AE)]dAE, (C13)

L

Therefore, by combining Eqs. (C9), (C10), (C11), (C12) and (C13) with Egs. (C4), (C7), and (C8), it is possible to find that

. [Z(Dxx+Dyy)L2uB][A(Lz)+A(L3)}F”(z =+1,8) ©14)
o 2L —1 ALy Ly) | St =+1,8)"
. [3(1)” +Dyy)L2MB} TA(L3) — 25AWL) | Fo e = +1, B) 1)
s = 2L —1 A(Ly; Ls) S:e=+1,p)"

In Egs. (C14) and (C15), the first term on the r.h.s depends only on the material electronic properties, the sgcond can be found
directly from experimental OAM resolved energy-integrated EMCD spectra, while the third, i.e., the ratio FU=HLD) describes

the dependence on dynamical diffraction effects.

Si(t=+1,8)
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