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This work clarifies the self-similar dynamics of large polymer rings using pulsed-field gradient nuclear
magnetic resonance and neutron spin echo spectroscopy. We find center of mass diffusion taking place in
three dynamic regimes starting (i) with a strongly subdiffusive domain hr2ðtÞicom ∼ tα (0.4 ≤ α ≤ 0.65Þ;
(ii) a second subdiffusive region hr2ðtÞicom ∼ t0.75 that (iii) finally crosses over to Fickian diffusion. While
the t0.75 range previously has been found in simulations and was predicted by theory, we attribute the first to
the effect of cooperative dynamics resulting from the correlation hole potential. The internal dynamics at
scales below the elementary loop size is well described by ring Rouse motion. At larger scales the dynamics
is self-similar and follows very well the predictions of the scaling models with preference for the self-
consistent fractal loopy globule model.
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Polymer melt dynamics is characterized by the fascinat-
ing topological interchain interactions that dominate their
dynamical behavior. For linear chains topological inter-
actions lead to tube formation that constrains lateral chain
motion—via its ends a given chain creeps out of the
tubelike constraints imposed by the surrounding chains
in the celebrated reptation process [1,2]. Because of the
absence of chain ends, caused by their loop topology,
polymer rings cannot undergo reptation and exhibit dis-
tinctly different static and dynamic properties. The ring
topology impacts not only the ring conformation but also
pertains to the different role of interactions with the
surrounding chains. The related phenomena are not only
of fundamental interest, but also are highly relevant, e.g.,
for a mechanistic understanding of cyclic DNA in chro-
matin folding in nucleosomes providing thereby easy
access to genetic information [3]. This Letter aims at the
microscopic experimental evaluation of the initial diffusion
and internal dynamics of large ring molecules and its
comparison with relevant theories and simulations.
Early work considered the conformation and motion of

polymer rings through an array of fixed obstacles. The
double folded lattice animal (DFLA) model [4] propounded
an analogy to randomly branched polymer—the lattice tree,
where relaxation occurs by retraction of double folded
strands leading to a terminal relaxation time τd ∼ N3 withN
the number of monomers, fractal dimension of df ¼ 4, and
a center of mass (com) diffusion D ∼ N−2. Later on the
model was refined correcting the terminal time to
τd ∼ N2.5 [5].
Grosberg et al. [6] dismissed the unrealistic limiting

fractal dimension of the DFLA model and considered a
skeleton lattice tree that branches randomly at an

entanglement spacing dtube ¼ lN1=2
e;0 where Ne;0 corre-

sponds to the length of an entanglement strand Ne in the
linear counterpart and l is the monomer length. From free
energy contemplations the fractal dimension of the back-
bone or trunk of the lattice tree was evaluated to dp ¼ 5=3,
the statistics of a self-avoiding random walk. For the
dynamics of this self-similar structure, Grosberg derived
τd ≈ τeðN=Ne;0Þ2.56, where τe is the entanglement time.
Finally in 2016 Rubinstein [7] developed the self-consistent
fractal loopy globule (FLG) model that also leads to a
limiting fractal dimension of df ¼ 3. The model is based on
the conjecture that the overlap criterion [8,9] in the packing
model for entanglements [10] also governs the rule for
overlapping loops in polymer rings. Larger overlaps are
forbidden by topological constraints. The constant overlap
OKN of loops is conjectured to occur in a self-similar way
over a wide range of length scales from an entanglement
length Ne ≅ Ne;0 or elementary loop size up to ring size R.
In order to discuss the dynamics of such rings in a melt, it

is important to note that in a melt of rings the topological
constraints are diluting with progressing time, because with
time loops of increasing sizes are relaxed and cease to be
obstacles in a similar way as tube dilation occurs, e.g., in
polydisperse linear melts [11,12]. The timescale is set by
the time a loop of a given size has traveled over its own size
defining thereby the effective time dependent tube dia-
meter dðg; tÞ ¼ hr2eðgÞi1=2 ¼ hΔr2comðg; tÞi1=2 (re: end to
end distance of a loop containing gmonomers; d: character-
istic loop size or effective tube diameter). The equation
holds for complete tube dilation, which is supported byMD
simulations; with df ¼ 3: dðtÞ ≅ dtube½gðtÞ=Ne;0�1=3, and
dðτeÞ ¼ dtube. The FLG assuming complete tube dilation is
also termed a self-consistent FLG model and leads to
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τd ¼ τeðN=Ne;0Þ2þ1=df . For the com diffusion constant
the model predicts Dcom ≅ R2

g=τd ¼ DR;e½N=Ne;0�−2þ1=df

with DR;e ¼ d20=τe, the Rouse diffusion coefficient of
one elementary loop. Without tube dilation [13]
(so-called naive FLG model) the terminal times are
τd ≅ τe½N=Ne;0�2þdp=df and the diffusion becomes
Dcom ≅ De½N=Ne;0�−2þð2−dpÞ=df . We remark: self-similar
relaxation implies that any section of the ring larger
than Ne;0 relaxes in the same way as the whole ring;
thus, the FLG model for a mode p leads to τp ¼
τe½N=ðpNe;0Þ�2þ1=df and correspondingly for the other
models τp ≅ τe½N=pNe;0�2þdp=df . Given this property, we
embrace the scaling models also as spectral models and the
exponents as spectral exponents. On the basis of the
experimentally [14] determined fractal ring dimensions
df ¼ 1=ν with small variations owed to slightly different
ν, for the spectral exponents the models predict: FLG: 2.45;
DFLA: 2.5; Grosberg: 2.75; naive FLG: 2.9.
Aside from theoretical modeling a significant amount of

MD simulations is available [15–20]. Using coarse grained
models, the largest MD-simulation effort so far is due to
Halverson et al. [15], where rings up to 57Ne equivalents
were simulated. In some disagreement to the predictions of
the scaling models, for ring diffusion they found D ∼ N−2.3.
Furthermore, the N dependencies of ring and linear counter-
parts were found to be equal, with the prefactor for ring
diffusion about 7 times larger than that for linear chains. In
agreement with theoretical predictions, the simulation
revealed subdiffusive behavior D ∼ t0.75 up to times and
distances of about to 2 to 3 times R2

g [5,21]. The internal
rearrangements of longer rings were found to occur much
faster than the time it takes to diffuse over their own size. But
on the other hand the t1=4 regime in the segment self-
correlation function extends to 2 to 3 times of R2

g; there exists
no second t1=2 regime as for linear chains [2]. Atomistic
simulations on large poly(ethylene oxide) (PEO) rings
corresponding to the 10 and 20 K samples [17] were analyzed
in terms of Rouse modes that were found to provide an
orthogonal basis also for rings. The Rouse spectrum τp ∼ p−2

was found not to change even for the largest ring, while the
Rouse amplitudes were diminishing for low p. Very recently
Wong and Choi [19] in terms of an united atom model
presented MD simulation for polyethylene (PE) rings in
connection with a polymer reference interaction site model,
where aside from normal Fickian diffusion a short time
regime with hr2comðtÞi ∼ t0.42 was observed.
We studied the internal motions and the connected short

time diffusion properties of very large PEO rings of sizes up
to 44 entanglement equivalents of the corresponding linear
chain. We find three dynamic regimes for the center of mass
diffusion and show that the internal dynamics follows the
concept of self-similar motion as proposed in the spectral
models, in particular Rubinstein’s FLG model [7].
The procedure for the synthesis and characterization of

the large PEO rings is described in [14]. Molecular weights
are summarized in Table I. Size exclusion chromatography
also proved the absence of higher molecular weight
condensation products in all samples. The conformation
of all rings was studied by small angle neutron scattering
(SANS) [14] and conformational parameters are also
presented in Table I.
We measured the long range diffusion for each ring with

pulsed-field gradient nuclear magnetic resonance (PFG
NMR) using a Varian 600 MHz system for the larger rings
(R40, R100) and Minispec 20 MHz from Bruker for
smaller rings (R10, R20) at 413 K. The inset in Fig. 1
displays the NMR diffusion data at 413 K as a function of
ring size in a double logarithmic plot revealing Dcom ∼
N−2.2 in good agreement with Halverson’s MD simulations
[15]. Figure 1 (inset) includes also diffusion data from
linear PEO chains at 413 K [23]. We find the slopes to be
slightly different (−2.3 instead of−2.2) and the diffusivities
differ by about a factor of 10 in fair agreement with
simulations [15]. For the neutron spin echo (NSE) experi-
ments samples containing 10% protonated rings in the
corresponding deuterated matrix were prepared. With these
samples the NSE experiments addressed the intraring pair
correlation function Sðq; tÞ. The measurements were

TABLE I. Achieved ring polymer materials; number of entanglement equivalents Ze;0 ¼ Mw=Me;0ðMe;0 ¼ 1980 g=mol) [14]; radii of
gyration Rg; inverse fractal ring dimensions ν ¼ 1=df; subdiffusivity exponent α for the initial com diffusion; scaling exponent μ
describing the internal ring dynamics; crossover mean squared displacements (MSD’s) of the com diffusion. Some dynamic results on
the smaller R10 and R20 rings were already published recently [22].

Ring Mw Ze;0 Rg=Å ν α μ hr22i=Å2 hr21i=Å2

hR100 87300 44 49.8a 0.41(1) 2.4(1) 6300 2300
dR100 96000 � � � 49.8a 0.430
hR40 44000 22 38.5 0.54(4) 2.4(1) 3885 1424
dR40 38600 � � � 35.4 0.448
hR20 21000 10 0.53(5) 2.6(0) 1924 740
dR20 21900 � � � 27.8 0.451
hR10 10100 5 0.65(4) 5.0(8) 1200 440
dR10 11200 � � � 21.4 0.460
aThe molecular weights of the R100 are slightly higher than quoted in Ref. [14] (new synthesis); the Rg were corrected using R2

g ∼ N0.78
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performed at the instrument IN15 of the Institute Laue-
Langevin in Grenoble, France [24,25] and PHOENIX
spectrometer of the MLZ in Munich, Germany [26].
Using four different neutron wavelengths λ ¼ 6, 10,
13.5, and 17 Å a dynamic range 0.02 ≤ t ≤ 1000 ns
was achieved. The data were corrected for the scattering
contribution of the deuterated matrix and the niobium
container. Figures 2(a) and 2(b) show NSE spectra
from the two large rings, R40 and R100. The solid lines
are the result of the theoretical description that will
be discussed in the following. Furthermore, in order to
obtain the segmental self-correlation function Sincðq; tÞ ¼
exp½−q2hr2ðtÞi=6� that directly reveals the segmental
MSD hr2ðtÞi we studied the fully protonated R100 at
q ¼ 0.12 Å−1 and q ¼ 0.16 Å−1, respectively. The experi-
ments were performed in order to clarify the important
elements of polymer ring dynamics. Requirements were
(i) The rings needed to be sufficiently large, in order to
apply scaling approaches. (ii) The complexity of the ring
dynamics demands to involve structural investigation by
SANS [14] and long range diffusion measurements by
PFG NMR.
The diffusion properties of polymer rings evidence three

dynamic regimes [22], an early time subdiffusive motion
withD ∼ tαðα ≤ 0.65Þwhich is followed by the established
D ∼ t3=4 dynamics and finally by Fickian diffusion. The
first two regimes are accessible by NSE at least for the
smaller rings, the long range diffusion by PFG NMR. The
com diffusion, respectively, the corresponding dynamic
structure factor Sðq; tÞ ¼ exp½−q2=6hr2comðtÞi� reflects the

time dependent center of mass mean-square-displacement
hr2comðtÞi that involves the three dynamic regimes. The
expression, realizing the proper crossover MSD’s hr21i and
hr22i is given in the Supplemental Material [27].
Figure 1 displays the hr2comðtÞi for R10 and R20 that are

directly derived from the structure factor as hr2comðtÞi ¼
−ð6=q2Þ ln ½Sðq; tÞ� taken at sufficiently low q, such
that internal modes do not contribute (R10∶q ¼ 0.03,
0.05, 0.08 Å−1; R20∶q ¼ 0.03, 0.05 Å−1). The R10 MSD
clearly displays the two crossovers at hr21i ≅ 440 Å2 and
hr22i ≅ 1200 Å2, while for R20 only the first crossover
hr21i ≅ 740 Å2 is visible. The crossovers are marked by
horizontal lines in Fig. 1. From simulations is known that
hr22i is expected to take place around hr22i ≅ 2;…; 3R2

g.
For R10 we have hr22i=R2

g ¼ 2.6 in very good agreement
with simulations. The first crossover hr21i was already
observed earlier [22] but remained unexplained. We find
hr21ið20 KÞ=hr21ið10 KÞ ¼ 1.68 very close to the ratio of the
two radii of gyration 27.82=21.42 ¼ 1.69 leading us to
conjecture that hr21i relates to the correlation hole effect as
proposed for linear polymers by Guenza [28]. The correlation
hole potential scales with R2

g and provokes com subdiffusivity
characterized by an exponent α. For linear chains α decreases
with increasing molecular weight [29]. With these results we
scale hr21i and hr22i toward higher Mw as hr21i; hr22i ∼ R2

g ∼
N0.78 [14]. The long range Fickian diffusion Dcom was taken
from NMR and corrected to the NSE regime (for further
evaluation of the NSE data the NMR diffusion values were
corrected by factor 1.3 visible in Fig. 1).
The internal ring motions are considered to evolve in two

steps: At short time and distances the elementary loops
perform Rouse dynamics with mode relaxation times
τp ∼ p−2, where p is the mode number. For larger distances
and times the regime of loop relaxation follows. In terms of
scaling theories, the mode spectrum has the form
τp ¼ τ2p−μ, where τ2 is the first ring mode (only even
modes are allowed) and μ the scaling exponent. Via a
continuity condition at τe the two regimes are connected. In
order to calculate the dynamic structure factor for internal
ring dynamics Sintðq; tÞ we need to assume that the Rouse
eigenvectors are an orthogonal basis also for the ring
system. In their simulations on large PEO rings by
Tsalikis et al. [17] have demonstrated this property.
Then Sintðq; tÞ becomes [30,31]

Sintðq;tÞ¼
1

N

X
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FIG. 1. Center of mass MSD as evaluated directly from the
dynamic structure factor (see text) for R10 (red) and R20 (blue).
Red crossed squares, open circles, and solid circles correspond to
q ¼ 0.03, 0.05, and 0.08 Å−1 for R10; blue filled and open
circles relate to q ¼ 0.03, 0.05 Å−1 for R20. The horizontal lines
mark the different crossovers hr21i and hr22i. Dashed black line
shows the MSD extrapolated from PFG NMR diffusivity mea-
sured for R10 ring. Inset: PFG NMR results for the diffusion
constants for rings in the melt (red squares) as a function of chain
length. Black squares show diffusion coefficients for correspond-
ing linear PEO melts. [23]
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νij delineates the conformational crossover from
Gaussian statistics at distances ji − jj ≤ Ne;0 to compressed
behavior ji − jj2ν at larger distances. It is described
by Fermi-type crossover functions taken from the
SANS results: νij ¼ θji−jjνþ ð1 − θji−jjÞν ¼ 0.5 with
θn ¼ f1þ exp½ðn − ntransÞ=nwidth�g−1, where ntrans ¼
Ne;0. For the relaxation rate

Γp ¼ ½1 − θp�π2Wl4p2

N2l4
þ θpWπ2

�
p

pmin

�
μ
�
pmin

N

�
2

ð2Þ

holds. θp ¼ f1þ exp½ðp − pminÞ=pwidth�g−1 is the cross-
over function in p with pmin ¼ Ze;0 the number of
elementary loops (Table I) and μ the spectral exponent.
The basic Rouse rate Wl4 ¼ 14890 Å4=ns is taken from
NSE experiments on Mw ¼ 190 kg=mol PEO melts also
measured at the same temperature [11]. Including all the
prior knowledge, we jointly fitted the spectra resulting from
R40 and R100 varying only the spectral exponent μ and the
exponents αR40 and αR100 that describe the first subdiffusive
regime of the com diffusion [28]. All other parameters
remained fixed. ntrans ¼ 45 was taken from SANS [14].
Since the fits did not depend much on pwidth, in order to
establish a smooth crossover, we chose pwidth ¼ 0.1pmin.
As Fig. 2 demonstrates the model leads to an excellent fit of
all the spectra. For the slopes αMw in the first subdiffusive
regime we obtain: αR10 ¼ 0.65; αR20 ¼ 0.53; αR40 ¼ 0.54;
αR100 ¼ 0.41. Similar small exponents for the initial dif-
fusion regime were also reported in recent MD simulations
for PE rings [19]. For the scaling exponent the joint fit
reveals μ ¼ 2.4 with a slowly growing flank toward higher
μ (Fig. 2 and Supplemental Material [27]). Applying the
same fitting procedure also to the large q regime of the R10
and R20 rings (see Supplemental Material [27]), we find
μðR10Þ ¼ 5.0 and μðR20Þ ¼ 2.5; seemingly these smaller
rings are not yet large enough to apply scaling consid-
erations. We note that the fit results are very sensitive to the
fractal exponents ν, thus it is essential to fix them to the
values, which were obtained by SANS with high precision
(better than 1%).
Discussing the results we first emphasize the overall

goodness of fit: with only three fit parameters all spectra
from R40 and R100 are excellently described. Let us now
turn to the diffusion properties. The data analysis confirmed
the three dynamic regimes of center of mass diffusion. In
particular, the physical origin of the novel very short time
regime seems to be clarified. Showing several attributes of
the short time diffusion of linear chains in the melt, we
conjecture that it results as a consequence of the correlation
hole potential as first suggested by Guenza [28] for linear
chains: (i) its dynamic regime extends to a range compa-
rable to R2

g and it scales with R2
g. This can be directly read

out from the R10 and R20 hr2comðtÞi and is corroborated by
the excellent fits for R40 and R100; (ii) the exponents α
decrease with increasingMw, as was observed for linear PE

melts [29]. On the basis of polymer integral equation theory
recently Dell and Schweizer also emphasized the impor-
tance of correlation hole effects [18]. The Mw dependence
of D ∼ N−2.2 agrees well with large scale MD simulations
but is in disagreement with all the scaling models that
predict diffusion exponents between about −1.6 (FLG) and
−2 (DFLA, naive FLG). Seemingly the simple scaling
argument D ∼ R2

g=τd ∼ N0.78=N2.4 ∼ N−1.62 does not hold.
The concept of internal motion that takes place within

two different dynamic regimes is well supported by our
data. As the ring conformations already show, at short
distances along the chain ji − jj ≤ Ne;0 ¼ 45 the confor-
mation is Gaussian and as in linear polymers Rouse
dynamics is a valid model. Beyond this limit the con-
formation is compressed and loop dynamics is proposed
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FIG. 2. NSE-spectra addressing the intraring pair correlation
function (single chain dynamic structure factor) (a) from the R40
melt and (b) from the R100 melt; the q values from above are:
0.042, 0.049, 0.055, 0.069, 0.078, 0.086, 0.11, 0.12, 0.13 Å. The
solid lines present the best fit using the scaling model (see text).
The inset shows the sum of squares of a combined fit of NSE data
for R40 and R100 as function of the spectral exponent μ. The
arrows indicate the expectations from the discussed theory
models.
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theoretically—the different scaling models distinguish
themselves by different spectral exponents. The quality
of the data description (i) shows that scaling models are
well supported and (ii) the scaling exponent μ comes out
close to the FLG prediction. However, inspecting sums of
error χ2 as a function of μ (see inset in Fig. 2 and
Supplemental Material [27]) we find a rather broad mini-
mum at μ ¼ 2.4with slowly growing flank toward higher μ.
The arrows in the inset indicate the scaling exponents
predicted by the other models that lead to higher χ2 but are
not completely out of question. Nevertheless, our experi-
ments agree best with Rubinstein’s self-consistent FLG
model for the internal ring dynamics even though the
predictions for diffusion are not fulfilled. Finally, Fig. 3
compares the segmental MSD as calculated on the basis of
the above described fit results (Fig. 2) with their direct
measurement in terms of the self-correlation function. As
may be seen, the direct measurement by incoherent
scattering and the segmental MSD from the coherent
structure factor perfectly agree with each other emphasizing
the overall consistency of our approach (for more details,
see Supplemental Material [27]). Furthermore, for R100
Fig. 3 extrapolates the fitting results to longer times such
that the overall picture is evidenced.
In conclusion, combining results of SANS [14] and

PFG NMR with NSE we could not only clarify the unique
topology driven self-similar ring dynamics that is dis-
tinctly different to the dynamics of polymers featuring
chain ends, but also distinguish between different scaling
theories. Furthermore, an initial anomalous regime of

center of mass diffusion could be related to the correlation
hole effect.

The project has been funded by the Helmholtz Program
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