| Home > Publications database > Deterministic global superstructure-based optimization of an organic Rankine cycle > print |
| 001 | 888839 | ||
| 005 | 20240712112851.0 | ||
| 024 | 7 | _ | |a 10.1016/j.compchemeng.2020.106996 |2 doi |
| 024 | 7 | _ | |a 0098-1354 |2 ISSN |
| 024 | 7 | _ | |a 1873-4375 |2 ISSN |
| 024 | 7 | _ | |a 2128/26519 |2 Handle |
| 024 | 7 | _ | |a WOS:000570247700007 |2 WOS |
| 037 | _ | _ | |a FZJ-2020-05253 |
| 082 | _ | _ | |a 660 |
| 100 | 1 | _ | |a Huster, Wolfgang R. |0 P:(DE-HGF)0 |b 0 |
| 245 | _ | _ | |a Deterministic global superstructure-based optimization of an organic Rankine cycle |
| 260 | _ | _ | |a Amsterdam [u.a.] |c 2020 |b Elsevier Science |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1607952577_17288 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a Organic Rankine cycles (ORCs) offer a high structural design flexibility. The best process structure can be identified via the optimization of a superstructure, which considers design alternatives simultaneously. In this contribution, we apply deterministic global optimization to a geothermal ORC superstructure, thus guaranteeing to find the best solution. We implement a hybrid mechanistic data-driven model, employing artificial neural networks as thermodynamic surrogate models. This approach is beneficial as we optimize the problem in a reduced space using the optimization solver MAiNGO. We further introduce redundant constraints that are only considered for the lower-bounding problem of the branch-and-bound algorithm. We perform two separate optimizations, one maximizing power output and one minimizing levelized cost of electricity. The optimal solutions of both objectives differ from each other, but both have three pressure levels. Global optimization is necessary as there exist suboptimal local solutions for both flowsheet configuration and design with fixed configurations. |
| 536 | _ | _ | |a 899 - ohne Topic (POF3-899) |0 G:(DE-HGF)POF3-899 |c POF3-899 |f POF III |x 0 |
| 588 | _ | _ | |a Dataset connected to CrossRef |
| 700 | 1 | _ | |a Schweidtmann, Artur M. |0 P:(DE-HGF)0 |b 1 |
| 700 | 1 | _ | |a Lüthje, Jannik T. |0 P:(DE-HGF)0 |b 2 |
| 700 | 1 | _ | |a Mitsos, Alexander |0 P:(DE-Juel1)172025 |b 3 |e Corresponding author |u fzj |
| 773 | _ | _ | |a 10.1016/j.compchemeng.2020.106996 |g Vol. 141, p. 106996 - |0 PERI:(DE-600)1499971-7 |p 106996 - |t Computers & chemical engineering |v 141 |y 2020 |x 0098-1354 |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/888839/files/CACE_2020_221_R2.pdf |y OpenAccess |
| 909 | C | O | |o oai:juser.fz-juelich.de:888839 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
| 910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 0 |6 P:(DE-HGF)0 |
| 910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 1 |6 P:(DE-HGF)0 |
| 910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 2 |6 P:(DE-HGF)0 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)172025 |
| 910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 3 |6 P:(DE-Juel1)172025 |
| 913 | 1 | _ | |a DE-HGF |b Programmungebundene Forschung |l ohne Programm |1 G:(DE-HGF)POF3-890 |0 G:(DE-HGF)POF3-899 |2 G:(DE-HGF)POF3-800 |v ohne Topic |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
| 914 | 1 | _ | |y 2020 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2020-09-09 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2020-09-09 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2020-09-09 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2020-09-09 |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b COMPUT CHEM ENG : 2018 |d 2020-09-09 |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2020-09-09 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2020-09-09 |
| 915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2020-09-09 |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2020-09-09 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2020-09-09 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2020-09-09 |
| 920 | _ | _ | |l yes |
| 920 | 1 | _ | |0 I:(DE-Juel1)IEK-10-20170217 |k IEK-10 |l Modellierung von Energiesystemen |x 0 |
| 980 | 1 | _ | |a FullTexts |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-Juel1)IEK-10-20170217 |
| 981 | _ | _ | |a I:(DE-Juel1)ICE-1-20170217 |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|