001     888839
005     20240712112851.0
024 7 _ |a 10.1016/j.compchemeng.2020.106996
|2 doi
024 7 _ |a 0098-1354
|2 ISSN
024 7 _ |a 1873-4375
|2 ISSN
024 7 _ |a 2128/26519
|2 Handle
024 7 _ |a WOS:000570247700007
|2 WOS
037 _ _ |a FZJ-2020-05253
082 _ _ |a 660
100 1 _ |a Huster, Wolfgang R.
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Deterministic global superstructure-based optimization of an organic Rankine cycle
260 _ _ |a Amsterdam [u.a.]
|c 2020
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1607952577_17288
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Organic Rankine cycles (ORCs) offer a high structural design flexibility. The best process structure can be identified via the optimization of a superstructure, which considers design alternatives simultaneously. In this contribution, we apply deterministic global optimization to a geothermal ORC superstructure, thus guaranteeing to find the best solution. We implement a hybrid mechanistic data-driven model, employing artificial neural networks as thermodynamic surrogate models. This approach is beneficial as we optimize the problem in a reduced space using the optimization solver MAiNGO. We further introduce redundant constraints that are only considered for the lower-bounding problem of the branch-and-bound algorithm. We perform two separate optimizations, one maximizing power output and one minimizing levelized cost of electricity. The optimal solutions of both objectives differ from each other, but both have three pressure levels. Global optimization is necessary as there exist suboptimal local solutions for both flowsheet configuration and design with fixed configurations.
536 _ _ |a 899 - ohne Topic (POF3-899)
|0 G:(DE-HGF)POF3-899
|c POF3-899
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Schweidtmann, Artur M.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Lüthje, Jannik T.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Mitsos, Alexander
|0 P:(DE-Juel1)172025
|b 3
|e Corresponding author
|u fzj
773 _ _ |a 10.1016/j.compchemeng.2020.106996
|g Vol. 141, p. 106996 -
|0 PERI:(DE-600)1499971-7
|p 106996 -
|t Computers & chemical engineering
|v 141
|y 2020
|x 0098-1354
856 4 _ |u https://juser.fz-juelich.de/record/888839/files/CACE_2020_221_R2.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:888839
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 0
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 1
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 2
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)172025
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 3
|6 P:(DE-Juel1)172025
913 1 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF3-890
|0 G:(DE-HGF)POF3-899
|2 G:(DE-HGF)POF3-800
|v ohne Topic
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-09-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-09-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2020-09-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-09-09
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b COMPUT CHEM ENG : 2018
|d 2020-09-09
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-09-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-09-09
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-09-09
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-09-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-09-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-09-09
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-10-20170217
|k IEK-10
|l Modellierung von Energiesystemen
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-10-20170217
981 _ _ |a I:(DE-Juel1)ICE-1-20170217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21