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Abstract

Organic Rankine cycles (ORCs) offer a high structural design flexibility. The

best process structure can be identified via the optimization of a superstruc-

ture, which considers design alternatives simultaneously. In this contribution,

we apply deterministic global optimization to a geothermal ORC superstruc-

ture, thus guaranteeing to find the best solution. We implement a hybrid

mechanistic data-driven model, employing artificial neural networks as ther-

modynamic surrogate models. This approach is beneficial as we optimize

the problem in a reduced space using the optimization solver MAiNGO.

We further introduce redundant constraints that are only considered for the

lower-bounding problem of the branch-and-bound algorithm. We perform

two separate optimizations, one maximizing power output and one minimiz-

ing levelized cost of electricity. The optimal solutions of both objectives

differ from each other, but both have three pressure levels. Global optimiza-
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tion is necessary as there exist suboptimal local solutions for both flowsheet

configuration and design with fixed configurations.

Keywords: Superstructure, Artificial neural network, Reduced-space

formulation, Relaxation-specific constraints, MAiNGO

1. Introduction

Organic Rankine cycles (ORCs) are relevant energy processes which al-

low for power generation using low- to mid-temperature heat sources. They

can be used for a variety of different heat sources, e.g., biomass, geothermal,

or waste heat [1]. When designing ORC processes, a high number of struc-

tural process alternatives can be considered. This flexibility in the process

structure allows to adjust the ORC to a heat source and ambient conditions.

Although rarely applied to energy systems, superstructure optimization is a

common approach in process systems engineering, which allows to include a

number of discrete process variants within a single optimization problem. For

ORC optimization, we consider state-equipment network formulations [2]. In

general, these kind of problems can be formulated using general disjunctive

programming (GDP). GDP problems can be reformulated using integer vari-

ables and yield mixed-integer nonlinear programming problems (MINLP).

These problems commonly exhibit suboptimal local optima in addition to

potentially multiple global optimal solutions. Local solvers cannot guarantee

to find a globally optimal solution and might terminate in a suboptimal local

solution. Local optima can result from the selection of integer variables, i.e.,

a suboptimal process structure. On the other hand, continuous optimization

variables can lead to suboptimal process design for a fixed process structure.
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In consequence, finding a global solution via deterministic global optimiza-

tion is highly desirable for economic process design.

Reviews on MINLP and GDP formulations are given in [3, 4]. A rele-

vant case study driving the advances in superstructure optimization is the

design of heat exchanger networks (HENs) [5–8]. Starting from HENs, some

groups extended the process models to the consideration of pressure chang-

ing units that produce or consume power (work and heat exchanging net-

works: WHENs) [9–15]. A similar approach is the use of superstructure-free

approaches, in which the structural alternatives are developed during the

solution procedure [16–19]. Martelli et al. [20] optimized a superstructure

for finding the optimal configuration of an integrated gasification combined

cycle. An overview on superstructure modeling for a variety of power gener-

ation systems is given in [21].

Furthermore, superstructure optimization has been considered for finding

optimal ORC design. Schilling et al. [22] presented an approach for simulta-

neous optimization of working fluid and ORC process structure, and solve the

resulting optimization problem using an outer-approximation strategy. Many

authors decompose large-scale MINLP problems to subproblems. In [23], an

outer level is solved using a genetic algorithm and a linearized inner level

is solved with CPLEX. Recently, Elsido et al. [24, 25, 26, 27] presented an

MINLP-MILP decomposition approach for the simultaneous optimization of

ORCs and HENs, involving several heat sources. Hipólito-Valencia et al.

[28, 29] presented a combination of model formulations that are solved us-

ing outer-approximation algorithms to obtain optimal designs of large-scale

plants. In [30, 31], a hybrid evolutionary/traditional algorithm (HEATSEP)

3



is proposed. Stijepovic et al. [32] optimized ORCs based on exergy composite

curves. In [33], they extended their approach to optimal working fluid selec-

tion, where they solve the linearized problem. These solution strategies can

only guarantee a global solution for convex problems, which is mostly not

the case, and thus, can result in a suboptimal integer solution. Deterministic

global optimization has been applied for solving HENs with an integrated

ORC using BARON [34, 35]. In there, the solution times are within several

hours, although an ORC with a small number of structural degrees of free-

dom (DoF) and cubic equation of state are used.

Still, solving superstructure problems to global optimality is challenging,

and there is need for appropriate formulations and solution approaches. A

promising approach for deterministic global flowsheet optimization is the re-

duction of the number of optimization variables handled by the optimizer [36–

38]. We illustrated the advantage of solving flowsheets to global optimal-

ity in a reduced-space (RS) formulation [39–41] using McCormick relax-

ations [42, 43]. The open-source deterministic global MINLP solver MAiNGO

allows to handle models accordingly via the propagation of McCormick’s re-

laxations, which allows to eliminate explicit model equations [44]. The opti-

mizer handles only the actual decisions variables (and if needed, additional

auxiliary optimization variables) and branches on them in the branch-and-

bound (B&B) algorithm. Other model variables are hidden from the op-

timizer. In consequence, the size of subproblems in the lower and upping

bounding problem is reduced. More detailed information is presented in [39]

and [44]. Recently, Rall et al. [45] performed a superstructure optimization

of a membrane process using MAiNGO, which was limited to a small number
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of process variables.

A remaining challenge is the inclusion of accurate thermodynamic prop-

erties in flowsheet optimization to obtain correct optimal solution points [46].

Working in a RS, a direct implementation of complex thermodynamic models

is difficult to optimize as they include implicit calculations [47–49]. We pro-

posed using feedforward artificial neural networks (ANNs) as thermodynamic

surrogate models, which can be efficiently optimized employing a RS formu-

lation [47, 50]. For this, ANNs are trained on thermodynamic fluid data that

is previously generated using thermodynamic libraries, e.g., CoolProp [51] or

REFPROP [52]. The global optimization of the resulting hybrid mechanis-

tic data-driven models showed to be viable, without introducing significant

errors. We applied this method to select an optimal single-species working

fluid [53] or obtain a globally optimal mixture composition [54] for ORCs.

The tightness of relaxations influences the convergence of the B&B al-

gorithm. One option for tightening are relaxation-specific constraints [55],

which are only considered in the lower-bounding problem. In here, we derive

them based on physical knowledge which is implicitly enforced in the pro-

cess model [56]. We further apply tailor-made relaxations for functions in

process engineering that are available in MAiNGO [57]. We combine the RS

formulation of a mechanistic process model of an ORC superstructure with

data-driven thermodynamic models. Together with relaxation-specific con-

straints and tailor-made relaxations, we solve the optimization problems to

global optimality. Thus, this article presents a methodology on how to solve

ORC superstructure models efficiently in a reduced space. While we focus

on optimal ORC design, the presented modeling strategies are not limited to
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ORC systems and thus can be applied to other superstructure process models

in chemical engineering. Note that the presented model formulation has been

developed to be solved using the reduced-space approach in MAiNGO. To

solve this superstructure with other state-of-the-art solvers such as BARON,

a different model formulation would be desirable. This especially refers to

the thermodynamic surrogate models, which can efficiently be solved in a re-

duced space [50]. Moreover, we herein utilize the parallelization of MAiNGO

which other solvers do not have. We thus refrain from numerical compar-

isons.

The article is structured as follows. We introduce the considered super-

structure in Section 2 and present the process model in Section 3, including

relaxation-specific constraints, tailor-made relaxations, and the use of the

ANNs. We optimize the process for a thermodynamic objective function

and, subsequently, a thermoeconomic objective function and present the re-

sults in Section 4. In there, we discuss both the obtained optimal solutions

as well as computational aspects. In Section 5, we summarize the approach

together with the optimization results and give an outlook on future research.

2. Organic Rankine cycle superstructure

We extend the geothermal set up presented in [41, 46, 54] by integrating

additional optional process units. We consider the most promising structural

options for a subcritical ORC employing a single heat source that were pre-

sented in previous works [24, 27, 58]. We describe the flowsheet of the ORC

superstructure (Figure 1) in the following.

The simplest ORC structure involves only necessary process units. In
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Figure 1: Flowsheet of the ORC superstructure. We use the following abbreviations: Sp:
splitter, P: pump, R: recuperator, M: mixer, Pr: preheater, E: evaporator, S: superheater,
T: turbine, D: desuperheater, C: condenser.
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particular, the saturated liquid working fluid isobutane is pressurized from

a low pressure level pLP to a higher pressure level (here: medium pressure

pMP ) using the pump P3. From there, the working fluid is preheated to sat-

urated liquid temperature in the preheater Pr2 using the geothermal brine.

It is then completely evaporated (E2) and expanded to a lower pressure level

using the turbine T2. The working fluid is cooled to saturation temperature

(D1) and completely condensed (C1) using cooling water. We refer to this

structure using the term “basic ORC”.

We consider the following structural options: A recuperator R1 can re-

cover surplus heat after the expansion to preheat the liquid stream. Fur-

thermore, we consider a second high pressure level pHP for the working fluid

(splitter Sp1/Sp3). If selected, a fraction of the working fluid flow is pres-

surized from pMP to pHP using pump P2 after Pr2. Alternatively, it can be

pressurized from pLP to pHP directly using pump P1 and subsequently pre-

heater Pr1. We introduce optional superheaters at pMP (S1) and pHP (S2).

The working fluid can be expanded from pHP to pLP directly (T3). Alter-

natively, it can be expanded from pHP to pMP (T1) and then be mixed with

the medium pressure stream (mixer M6). Furthermore, we consider turbine

bleeding, where a stream fraction leaving T1 is mixed with the working fluid

at mixer M2. In this case, E2 and S2 are inactive.

Finally, the brine stream can be used in sequential or parallel mode. In

the sequential mode, the sequence of heat exchangers for the brine stream is

S1, E1, Pr3, Pr1, S2, E2, and Pr2. In parallel mode, the brine stream is

split equally into two streams (S1, E1, Pr3, Pr1 and S2, E2, Pr2). We do

not display the brine and cooling water streams in Figure 1 for clarity.
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The presented structural options correspond to a maximum number of

28 � 256 potential integer combinations. However, many combinations are

infeasible due to logic constraints, e.g., the nonexistence of the high pressure

level discards many options. We list the logic constraints in Section 3. More

structural options could be considered, e.g., a higher number of additional

pressure levels. However, we select this superstructure as it encloses estab-

lished structural ORC options for subcritical pressure levels making use of a

single heat source.

3. Process model

In this section, we present relevant parts of the process model, i.e., the

RS formulation, the incorporation of tailor-made relaxations and relaxation-

specific constraints, and the thermodynamic model of the working fluid. The

respective strategies are described in a way such that they can be transferred

to similar process models. The process model is available in the electronic

supplementary information [59]. Relevant model parameter values are sum-

marized in Table A1. We apply standard modeling assumptions for ORC

design, e.g., neglect pressure drop and heat losses. Furthermore, we assume

constant heat transfer coefficients for heat exchangers and efficiencies for

rotating equipment.

3.1. Reduced-space formulation of superstructure model

The selection of variables for the RS formulation of the process model can

strongly influence the CPU time to solve the problem. For this, we build on

insight gained in previous studies [41, 53, 54] and select as few optimization

variables as possible, making use of explicit function evaluations. However,
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the propagation of McCormick relaxations through complex functions can

lead to weak relaxations. Thus, considering additional optimization variables

can also be beneficial for the global optimization [40, 60]. The identification

of an optimal formulation (hybrid formulation between full-space and RS) is

ongoing research.

The basic ORC process model can be evaluated explicitly using pLP , pMP ,

and 9mMP as DoFs. In [46], we included a superheater in the flowsheet, for

which we introduced the superheat at the turbine inlet ∆hturb,in as DoF. For

the superstructure, we introduce one binary variable yi in the process model

for each structural option presented in Section 2. Furthermore, additional

arising continuous DoFs are the high pressure level pHP , the mass flow at

high pressure level 9mHP , the superheat at high pressure level ∆hS1, and the

mass-specific enthalpy at Pr2 inlet hPr2. We select the mass flow at low pres-

sure level 9mLP and the mass-specific enthalpy at T2 inlet hT2 as additional

optimization variables to allow for explicit model evaluation. In total, the

superstructure includes nine continuous and eight binary optimization vari-

ables (Table 1). In the B&B algorithm, we branch on the binary variables

first, i.e., we set a branching priority of two for integer variables.

Logic constraints on binary variables are given in Table 2. In there, the

first three equalities are assignments in the RS formulation, denoted by “:�”.

The variables on the left-hand side of the assignment are intermediate vari-

ables (as opposed to optimization variables, see [39]), i.e., they act as gray

boxes to the optimizer and they are not branched on in the B&B algorithm.

The displayed assignments involve bilinear integer expressions that can be

reformulated to linear expressions using the Big-M method, which is com-
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Table 1: Optimization variables of the reduced-space model formulation in MAiNGO.
Continuous variables are listed in the upper part, binary variables in the lower part.

Variable Unit Bounds Explanation

pLP bar [2,5] low pressure level
pMP bar [5,22] medium pressure level
pHP bar [5,22] high pressure level
9mLP kg/s [5,1000] mass flow at low pressure level
9mMP kg/s [5,1000] mass flow at medium pressure level
9mHP kg/s [5,1000] mass flow at high pressure level

∆hS1 kJ/kg [10,300] superheat at high pressure level
hT2 kJ/kg [400,650] enthalpy at T2 inlet
hPr2 kJ/kg [50,450] enthalpy at Pr2 inlet

yHP - t0, 1u high pressure level
yPar - t0, 1u brine in parallel mode
yTB - t0, 1u turbine bleeding
yP2 - t0, 1u pump (MP Ñ HP )
yT3 - t0, 1u turbine (HP Ñ LP )
yR1 - t0, 1u recuperator
yS1 - t0, 1u superheater (HP )
yS2 - t0, 1u superheater (MP )
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monly applied in GDP [61]. In our formulation, each Big-M reformulation

would introduce one additional optimization variable and four inequality con-

straints to the optimization problem in the RS formulation. We found that

the bilinear expression is computationally preferable to Big-M in our case.

Relaxations of bilinear products are built in MAiNGO using McCormick’s

method [62, 63]. However, we use the Big-M method for the reformulation of

bilinear constraints which require no additional optimization variables in the

RS formulation, i.e., can be evaluated using the existing set of optimization

and intermediate variables. An in-depth comparison of the methods for the

RS formulation is relevant future research.

3.2. Tailor-made relaxations for selected functions in process engineering

The tightness of relaxations has a major impact on the CPU time of

the B&B algorithm. In MAiNGO [44], envelopes and tight relaxations for a

number of functions relevant in process engineering are available, which are

stored in the MC++ library [64, 65]. We present their use within our process

model in the following.

At each of the three working fluid mixing points in the superstructure

(M3, M7, M8), we apply the sum div function, which can be applied to

functions of the form pa1xq{pa2x �
°n

i�1 biyiq (x,y: variables, a,b: positive

parameters). The calculation of the corresponding envelopes is presented

in [57]. We reformulate the energy balance around a generic mixer (Equa-

tion (1)) to obtain an explicit expression for the working fluid enthalpy at

the outlet hout (Equation (2)) using the sum div function for both fractions
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Table 2: Logic constraints for binary variables in the ORC superstructure. Note that “iff”
is the abbreviation for “if and only if”. We use :� for assignments in the RS formulation,
i.e., the intermediate variables (left-hand side) are not handled by the optimizer [39].

Equation Explanation

yP1 :� yHP � p1 � yP2q pump P1 is active iff high pressure level is
active and pump P2 is inactive

yT1 :� yHP � p1 � yT3q turbine T1 is active iff high pressure level is
active and turbine T3 is inactive

yPr1 :� yHP � p1 � yP2q preheater Pr1 is active iff high pressure level
is active and pump P2 is inactive

yPr3 :� yP2 preheater Pr3 is active iff pump P2 is active
yE1 :� yHP evaporator E1 is active iff high pressure level

is active

yPar ¤ yHP parallel brine stream can only be active if high
pressure level is active

yS1 ¤ yHP superheater S1 can only be active if high pres-
sure level is active

yT3 ¤ yHP turbine T3 can only be active if high pressure
level is active

yTB ¤ yHP turbine bleeding can only be active if high
pressure level is active

yTB ¤ yP2 turbine bleeding can only be active if pump
P2 is active

yT3 � yTB ¤ 1 turbine T3 and turbine bleeding cannot both
be active

yS2 � yTB ¤ 1 superheater S2 and turbine bleeding cannot
both be active

yE2 � yTB ¤ 1 evaporator E2 and turbine bleeding cannot
both be active

yPr2 � yTB ¤ 1 preheater Pr2 and turbine bleeding cannot
both be active

yPar � yTB ¤ 1 parallel brine stream and turbine bleeding
cannot both be active
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to provide tighter relaxations.

0 � p 9min,1 � 9min,2qhout � 9min,1hin,1 � 9min,2hin,2 (1)

hout �
9min,1hin,1 � 9min,2hin,2

9min,1 � 9min,2

�
9min,1

9min,1 � 9min,2

hin,1 �
9min,2

9min,1 � 9min,2

hin,2 (2)

We further use the envelopes for the mean-logarithmic temperature differ-

ence respectively its reciprocal [66, 67] for the design of each heat exchanger.

Also, for the calculation of the investment costs of each process unit, we em-

ploy the envelopes for the cost function derived in [57], which are based on

the cost correlations presented in [68]. In there, they reduced the CPU times

for the thermoeconomic optimization of a combined-cycle power plant [39] by

up to 80%. We employ a heat exchanger class, which, next to its evaluation,

adds inequality constraints and relaxation-specific constraints to the overall

process model. In the heat exchanger class, we eliminate redundant pinch

inequality constraints if the working fluid passes two heat exchangers succes-

sionally. Finally, we use the envelopes of the hyperbolic tangent activation

function used in ANNs [50].

3.3. Relaxation-specific constraints

In addition to tight function relaxations, we also apply relaxation-specific

constraints that can tighten the relaxation of the overall problem [55, 56, 69,

70]. These are redundant constraints that are implicitly enforced by the pro-
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cess model. Thus, they are not necessary for the solution of the problem,

but they can potentially tighten the relaxations. Thus, relaxation-specific

constraints are applied in the lower bounding problem and not in the up-

per bounding problem. They possibly can discard infeasible domains in the

lower bounding problem and thus help to reduce to number of nodes the

the B&B algorithm has to branch on. Implementing these redundant con-

straints as conventional constraints can lead to numerical difficulties for the

local optimization solver. MAiNGO allows for a direct declaration of these

constraints [44].

As described in the previous sections, we use binary variables to (de)activate

constraints and manipulate model equations to account for different process

structures. We thus expect weak relaxations for process variables whose cal-

culation involves optional process units, as the relaxations heavily depend on

the formulation of the logic constraints. In consequence, we try to tighten

these relaxations using relaxation-specific constraints. For this, we include

additional information based on physical insight. In our superstructure opti-

mization problem, we implement relaxation-specific constraints which enforce

mass and energy balances for different control volumes, i.e., we aggregate pro-

cess units and formulate mass and energy balances for the respective model

segment. The mass and energy balances around all different combinations

of process units are enforced implicitly in the process model, i.e., adding

them explicitly as relaxation-specific constraints can help to tighten the re-

laxations. We include additional reformulated energy balances around single

heat exchangers, the complete ORC, the geothermal brine, single working

fluid pressure levels, mixing points, and cooling water. Again, these refor-
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mulations can help to tighten relaxations, as they allow to include of process

knowledge which is only included implicitly in the process model. Further-

more, we use inherent knowledge based on process functionalities, e.g., intro-

duce relaxation-specific inequality constraints that ensure increasing working

fluid enthalpies along a series of heat exchanger units, which is caused by the

heat transfer from the heat source. In total, we include 21 relaxation-specific

equality constraints and 99 relaxation-specific inequality constraints.

3.4. Thermodynamic surrogate model of the working fluid

Accurate thermodynamic models are important for process optimiza-

tion [46]. However, rigorous models often exhibit nonlinear implicit func-

tions that lead to additional optimization variables and weak McCormick

relaxations [47–49]. In our previous works [46, 47], we illustrated how feed-

forward ANNs learn accurate thermodynamic properties of fluids and can be

efficiently optimized as hybrid mechanistic data-driven process models in a

RS formulation [50].

Thus, we use ANNs for the calculation of all working fluid properties in

this work. We apply ANNs consisting of two hidden layers with four neurons

for the saturated properties and two hidden layer with six neurons for the

properties of subcooled liquid and superheated vapor [53]. A smaller number

of neurons for the saturated properties is needed as there is less complexity in

the data. We apply separate ANNs for the mentioned fluid regions with small

number of neurons each, which result in tight relaxations. We omit models

for the two-phase region (see [54]). They are not needed here due to isother-

mal phase changes of the working fluid, i.e., it is sufficient to apply pinch

point inequalities for the saturated fluid states at the inlet or outlet of the
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phase changing heat exchangers. In case of non-isothermal phase changes,

e.g., when applying zeotropic working fluid mixtures, the pinch can occur

within the heat exchanger. Enforcing the pinch inequality along the length

of heat exchanger is needed in these cases, as presented in [54]. We perform

the training of the ANNs in Matlab 2017b (Bayesian regularization back-

propagation algorithm, 40% training, 30% validation, 30% test set). For the

proposed set of ANNs, the training time is in an hourly range, thus insignif-

icant compared to the process optimization. The artificial neural network

models and illustrative training scripts are available open-source within the

“MeLOn - Machine Learning Models for Optimization” toolbox [71]. All

ANNs and their respective accuracies on all data sets are available in the

electronic supplementary information [59].

4. Results and discussion

We performed all process optimizations on an Intel(R) Core(TM) i7-4790

CPU with 3.60 GHz, 16 GB RAM, Windows 10 64 bit operating system, using

MAiNGO v0.1.25 [44], with a relative optimality tolerance of 10�4. The B&B

algorithm terminates once the relative difference between upper and lower

bound is smaller than the selected tolerance. We applied seven processes

for the master-slave parallelization of the B&B algorithm. We first present

the results of the thermodynamic optimization, investigate computational

aspects of different solution approaches, and finally present the results of the

thermoeconomic optimization.
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4.1. Thermodynamic optimization

In the thermodynamic optimization, we maximize the generated net power.

This selection implies that the investment costs do not influence the objective

function.

4.1.1. Optimal process design

The flowsheet obtained by the thermodynamic optimization is given in

Figure 2. The optimal configuration involves three pressure levels, two su-

perheaters, and one recuperator. The results are in agreement with [41, 46],

where the thermodynamic optimum suggested superheating and recupera-

tion. Furthermore, the working fluid is pressurized from the low to the

medium pressure level and from there to the high pressure level (not directly

from low to high pressure level). Similarly, it is expanded from the high to the

medium pressure level and from there to the low pressure level. The geother-

mal brine is used in the sequential mode. Thus, the active binary decision

variables are yHP , yS1, yS2, and yR1. Values of relevant decision variables

are given in Table 3. Table A2 in the appendix lists the states of all work-

ing fluid streams. Using this configuration, the ORC generates 19.4 MW

net power. This is 17% higher compared to using no third pressure level

(Pnet,max � 16.6 MW, [46]). The levelized cost of electricity LCOE, which

are a trade-off between generated net power and investment cost [41, 53], are

comparably high.

The additional pressure level can elevate the average temperature of the

heat transfer, i.e., reduce exergy destruction, and thus increase the total ef-

ficiency. Figure 3 shows that the area between the geothermal brine and the

working fluid in a 9Q-T -diagram, which corresponds to exergy destruction in
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Figure 2: Optimal flowsheet of the considered ORC for Pnet,max. The gray-colored heat
exchangers are considered as a single process unit.

Table 3: Results of the thermodynamic optimization of the ORC.

pLP pMP pHP 9mMP 9mHP PT1 PT2 Pnet LCOE

rbars rbars rbars rkg
s
s rkg

s
s rMWs rMWs rMWs r US-$

MWh
s

4.4 13.1 20.0 206.9 269.3 4.4 20.4 19.4 77.5

19



0 0.5 1 1.5 2

10
5

300

320

340

360

380

400

420

Figure 3: Resulting heat transfer from the geothermal brine to the working fluid for the
thermodynamic optimization. The dashed orange line indicates the minimal temperature
difference, i.e., the pinch is present at four locations.

the heat exchangers, is small. In particular, the minimum temperature dif-

ference of 15 K is present at four locations within the cycle (working fluid:

MP evaporator inlet, MP superheater outlet, HP evaporator inlet, HP su-

perheater outlet).

In the optimal process structure, expansion from high- to low-level pres-

sure (T3) is not selected. The specific work that can be generated strongly

depends on the specific heat capacities at different pressure levels in the su-

perheated region. Thus, this optimal structure can hardly be determined

without an optimization procedure. Also, direct pressurization from low-

to high-level pressure (P1) and turbine bleeding are not thermodynamically

preferable in this case study.

The selected ORC structure with a third pressure level, superheaters,
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and a recuperator is selected in many studies in literature [1]. Although rare

for small-scale plants, first ORCs with a third pressure level were realized.

For large-scale Rankine cycles, e.g., combined-cycle power plants, three to

four pressure levels are state-of-the-art. However, it is interesting to see that

turbine bleeding and direct pressurization from low- to high-pressure level

(and vice-versa) are not selected. Overall, the optimal process structure is in

agreement with literature. However, the optimal structure strongly depends

on many factors that are specific for each case study, such as the selection of

the working fluid, and thus, the optimization provides relevant insight.

The distribution of the investment costs of the ORC units (Figure 4) illus-

trates that the most expensive unit is the recuperator (InvR1 = m US-$ 12.0).

Following to this, the turbine T2, the condenser C1, and the turbine T1 have

the highest shares (InvT2 = m US-$ 7.0, InvC1 = m US-$ 2.7, InvT1 = m US-

$ 2.3).

We applied the local MINLP solver KNITRO [72] to investigate local

optima with respect to structural decisions. A single optimization that is

initialized between lower and upper bound of each variable converges after 4

CPU seconds. The solution value is Pnet � 16.7 MW, i.e., 14% less net power

generation compared to the globally optimal solution. Turbine bleeding is

selected in this local solution, illustrating that there exist local optima with

respect to both the process structure and the design for a fixed structure.

With a high number of starting points, KNITRO can identify the same solu-

tion we obtain using MAiNGO, but cannot guarantee its global optimality.

While solving the problems to global optimality using MAiNGO, we observed

the presence of many suboptimal local optima in all optimization set ups.
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Process unit Inv. cost
[m US-$]

R1 12.03
T2 6.98
C1 2.70
T1 2.30
Pr2 0.75
E1 0.71
E2 0.67
S1 0.57
Pr3 0.47
P3 0.47
S2 0.39
D1 0.33
P2 0.29

Figure 4 & Table 4: Distribution of investment costs for Pnet,max.

This highlights the need for global optimization to find both the best process

structure and design.

4.1.2. Computational performance

We now compare the superstructure optimization with the brute-force

approach of enumeration and global optimization of each NLP. In the NLP

optimizations, we do not branch on the integer variables. Out of the 256

integer realizations, 72 are found feasible. This enumeration confirmed the

optimum we obtained using the superstructure formulation.

One NLP optimization did not converge within 12 hours wall time, at

which point the relative gap between lower and upper bound was at 3.6%.

However, the lower bound was inferior to the global solution of the MINLP

when the optimization was terminated. Thus, in Table 5, we sum over the

converged solutions of feasible structures and add the time of the manually
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terminated optimization. We neglect infeasible combinations as the time

for proving infeasibility is less than 3 seconds. Furthermore, we give the

computational properties of the superstructure optimization with and with-

out relaxation-specific constraints (Table 5). The use of relaxation-specific

constraints reduces the number of B&B iterations by 39% compared to not

using them, which is a result of tighter relaxations of the feasible region. The

CPU time for solving the MINLP problem is reduced by 49%. For the enu-

meration of the flowsheets, we also included the presented relaxation-specific

constraints. These results illustrate the potential of solving superstructure

formulations with relaxation-specific constraints embedded.

Table 5: Computational results of the thermodynamic optimization of the ORC using
different modeling approaches. The CPU time is the sum over all cores in the parallelized
B&B algorithm.

Approach B&B iterations CPU time in hours

Enumeration 4.1 � 107 485
Superstructure w/o rel.-spec. constr. 1.8 � 107 590
Superstructure with rel.-spec. constr. 1.1 � 107 292

4.2. Thermoeconomic optimization

In the thermoeconomic optimization, we minimize LCOE. This objec-

tive function can account for a trade-off between the thermodynamic optimal

design and investment cost, as shown in [53].

The results of the thermoeconomic optimization suggest a similar optimal

ORC structure as the thermodynamic optimization (Figure 5). The major

differences are the nonexistence of the recuperator and both superheaters.

The results for the ORC structure are in agreement with the observations
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made in [41]. Note that we investigated only two pressure levels in [41]. In

consequence, the high number of structural options in here can basically re-

sult in a different combination of superheaters and/or recuperator.

While Pnet is only reduced by 5% compared to the thermodynamic op-

timization, the ORC investment cost can be reduced from m US-$ 28.6 to

m US-$ 15.2. The LCOE are reduced from 77.5 US-$/MWh (Pnet,max) to

61.2 US-$/MWh (LCOEmin). By selecting the additional pressure level,

LCOE can be reduced by 4% compared to the basic ORC (LCOEmin,basic =

63.8 US-$/MWh).

T1

T2P3

P2

C1 D1

Pr3 E1

E2
Pr2

Geothermal brine

Cooling water

Sp3

M6

Figure 5: Optimal flowsheet of the considered ORC for LCOEmin.

All three pressure levels and mass flows are close to the thermodynamic

optimum (Table 6). All working fluid states are listed in Table A2 in the ap-

pendix. Figure 6 illustrates that more exergy is destroyed in the heat transfer

between working fluid and brine, as the areas between the curves are larger
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Figure 6: Resulting heat transfer from the geothermal brine to the working fluid for the
thermoeconomic optimization. The dashed orange line indicates the minimal temperature
difference, i.e., the pinch is present at two locations.

than in Figure 3. The minimum temperature difference is only present at

two locations (working fluid: MP evaporator inlet, HP evaporator inlet).

Table 6: Results of the thermoeconomic optimization of the ORC.

pLP pMP pHP 9mMP 9mHP PT1 PT2 Pnet LCOE

rbars rbars rbars rkg
s
s rkg

s
s rMWs rMWs rMWs r US-$

MWh
s

4.8 15.5 21.4 196.3 285.8 3.0 20.1 18.5 61.2

The turbine T2, the condenser C1, and the turbine T1 have the high-

est share of investment costs (InvT2 = m US-$ 6.9, InvC1 = m US-$ 2.5,

InvT1 = m US-$ 1.8) (Figure 7).

The thermoeconomic optimization converged within 783 CPU hours (1.9 �

107 B&B iterations, 115 hours wall clock time). As in similar problems [41,
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53, 54], the thermoeconomic optimization needs more CPU time than the

thermodynamic optimization, which is mostly due to a more complicated

objective function. We only investigated the results of the superstructure

optimization with relaxation-specific constraints, as this showed to be the

fastest approach for solving the flowsheet optimization (see Section 4.1.2).

A local optimization with KNITRO converges after 39 CPU seconds. It

results in an objective value of LCOE � 64.6 US-$/MWh, for which a differ-

ent ORC structure is selected, e.g., T3 is active instead of T2. KNITRO can

identify the same solution as MAiNGO with an increased number of starting

points.

Process unit Inv. cost
[m US-$]

T2 6.92
C1 2.52
T1 1.76
Pr2 1.01
E1 0.72
E2 0.63
P3 0.55
Pr3 0.46
D1 0.35
P2 0.28

Figure 7 & Table 7: Distribution of investment cost for LCOEmin.

5. Conclusion

We present a strategy for solving complex nonlinear superstructure prob-

lems to guaranteed global optimality. In particular, we consider four mod-

eling aspects that significantly influence the solution time. First, we formu-
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late the superstructure model in a reduced-space which reduces the number

of variables and constraints handled by the optimizer. Second, we employ

tailor-made relaxations for selected functions in process engineering. Third,

we implement relaxation-specific constraints based on process insight that

tighten the relaxations of the feasible region. Fourth, we apply ANNs as ac-

curate thermodynamic models which can be efficiently solved in the reduced-

space formulation. In addition, we use the parallelization of our open-source

solver MAiNGO.

The described solution strategies can be applied for solving superstructure

process models in chemical and energy engineering. In here, we demonstrate

the approach for an ORC superstructure that includes 28 possible structural

integer combinations. Using the proposed strategy, we solve the thermo-

dynamic and thermoeconomic process optimization within 44 and 115 hours

wall-clock time, respectively. Particularly, we find that the relaxation-specific

constraints reduce CPU times by up to 49%.

The optimal ORC configuration generates 17% more net power than a ba-

sic ORC configuration. Using a thermoeconomic objective function, we can

reduce investment costs by 47% compared to the thermodynamic optimum,

while the generated net power is only reduced by 5%. Although differing

process structures are selected, selecting three pressure levels is beneficial for

both objective functions, as it allows to reduce the exergy destruction of the

heat transfer. The obtained process structures are selected in many studies in

literature, but not yet state-of-the-art in most plants, which could be due to

additional control measures. Several suboptimal local optima were observed,

which justifies the need for solving ORC design problems with deterministic
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global optimization solvers.
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Appendix A. Tables

Table A1: Model assumptions for the geothermal case study. Please note that assumptions
on heat exchanger properties are selected based on the contacting fluid regimes. We select
their values in accordance with [41] to ensure comparability.

Parameter Unit Value

Tbr,in K 408
Tbr,out K 357
p 9m � cpqbr kW/K 3627
Tcw,in K 288
∆Tp,evap,pre,SH K 15
∆Tp,cond,dSH K 10
∆Tp,recup K 10
αpreh kW/(m2 K) 1.1
αevap kW/(m2 K) 2
αSH kW/(m2 K) 0.7
αcond kW/(m2 K) 1.6
αdSH kW/(m2 K) 1.6
αrecup kW/(m2 K) 0.06
ηis,T - 0.9
ηmech,T - 0.8
ηis,pump - 0.9

Appendix B. Economic model

In the following, we present the economic model, which is based on [41].

We minimize levelized cost of electricity in the thermoeconomic optimization:

LCOE �
Invtotal � Ψ � ϕ

Pnet � Teq
� uvar, (B.1)

with the sum of the investment cost Invtotal. We assume the other factors to

be constant: the equivalent utilization time at rated power Teq = 8000 h/a,

an annuity factor Ψ = 0.2 1/a, a fixed operation cost factor ϕ = 1.06 and a

variable cost factor uvar = 4 US-$/MWh.
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Table A2: Working fluid conditions for the globally optimal solutions of the thermody-
namic (Pnet,max) and thermoeconomic (LCOEmin) optimization.

Pnet,max LCOEmin

Process unit Location p T 9m p T 9m
[bar] [K] [kg/s] [bar] [K] [kg/s]

P3 inlet 4.4 307 476.2 4.8 309 482.1
P3 outlet 13.1 307 476.2 15.5 310 482.1
Pr2 inlet 13.1 325 476.2 15.5 408 482.1
Pr2 outlet 13.1 352 476.2 15.5 360 482.1
P2 inlet 13.1 352 269.3 15.5 360 285.8
P2 outlet 20.0 353 269.3 21.4 361 285.8
Pr3 outlet 20.0 373 269.3 21.4 377 285.8
E1 outlet 20.0 373 269.3 21.4 377 285.8
S1 outlet 20.0 393 269.3 - - -
T1 outlet 13.1 377 269.3 15.5 362 285.8
E2 inlet 13.1 352 206.9 15.5 360 196.3
E2 outlet 13.1 352 206.9 15.5 360 196.3
S2 outlet 13.1 369 206.9 - - -
M6 outlet 13.1 373 476.2 15.5 361 482.1
T2 outlet 4.4 340 476.2 4.8 321 482.1
D1 inlet 4.4 317 476.2 4.8 321 482.1
D1 outlet 4.4 307 476.2 4.8 309 482.1

We determine the heat exchanger area and its respective base purchase

cost Cp,i based on the mean logarithmic temperature difference and the heat

transfer rate. The investment cost of a heat exchanger Invhx,i is calculated

in combination with a pressure factor Fp,i [68]:

Invhx,i � 1.18 � p1.63 � 1.66 � 2.75 � Fp,iq � Cp,i. (B.2)

For the investment cost of the pumps Invpump, the turbines Invturb, and

a cooling tower Invtower, which is included to account for heat-sink related
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cost, based on the consumed/produced power [73]:

Invpump

US � $
� 3540 �

�
Ppump

kW


0.71

(B.3)

Invturb
US � $

� 6000 �

�
Pturb

kW


0.7

� 60 �

�
Pturb

kW


0.95

(B.4)

Invtower

US � $
� 1.5 � 105 �

�
Pfan

Pfan,0


0.6

(B.5)
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